=
s % UNIVERSIDAD
FACULTAD DE INFORMATICA % 2Ry NACIONAL

DE LA PLATA

Maestria en Ingenieria de Software — Modalidad a distancia

Duracion: 108 hs. Totales.
Tecnicas y Herramientas Cantidad de horas VC: 30hs

Cantidad de horas de actividades en linea y de
trabajo final: 78hs.
Plan de estudios 2021 Docente Responsable: Dr. Grigera, Julian
AfRo 2025 Docentes Tutores: Dr. Urbieta, Matias

(Académico/Tecnolégico)
Dr. Diaz-Pace, Andrés
(Académico/Tecnolégico)

Tutores: Dr. Gardey, Juan Cruz
(Académico/Tecnoldgico)
Maiten, Meza
(Administrativo)

OBJETIVOS GENERALES:

El objetivo de la materia es introducir a los alumnos en técnicas modernas de la
programacion, en particular en aspectos de la programacion orientada a objetos, disefio
orientado a objetos, técnicas complementarias como test de unidad, refactorings e
introduccion a patrones de diseno.

Se introduce también al alumno en el uso de un lenguaje de modelado grafico orientado a
objetos (UML), que le permitira construir diagramas especificando distintos aspectos de un
sistema.

Se enfatiza en la construccién de arquitecturas de software modulares, extensibles y
reusables, que son conceptos claves para aplicaciones de gran porte.

COMPETENCIAS A DESARROLLAR EN RELACION CON EL OBJETIVO DE LA
CARRERA

C.1- Manejar y aplicar tecnologias actuales para el desarrollo de sistemas de software,
incluyendo métodos, lenguajes, arquitecturas, frameworks y herramientas.

C.2- Tener capacidad para analizar diferentes modelos de proceso de desarrollo de
software y evaluar su calidad tanto en aspectos del producto resultante como en la gestién de
los individuos involucrados y sus interacciones.

C.4- Definir parametros de calidad tanto interna como externa de un producto software, y
establecer procesos de evaluacion y mejora que atiendan la satisfaccion de todos los



==
f’ % UNIVERSIDAD

e R NACIONAL

W7/ DE LA PLATA

FACULTAD DE INFORMATICA

involucrados (el cliente, los usuarios y su experiencia, y el equipo de desarrollo).

C.6- Tener capacidad de analizar el estado del arte en los distintos aspectos de la ingenieria
de software, asi como producir conocimiento cientifico en el area.

CONTENIDOS MINIMOS:

= Principios del disefio orientado a objetos y lenguajes de modelado y programacién
orientados a objetos.

= Métodos agiles. Testing y refactoring como practicas esenciales de los métodos agiles.

= Patrones de disefio.

= Mejora de la calidad interna del software

PROGRAMA

Programacién Orientada a Objetos
e Principios del Disefio Orientado a Objetos. Reutilizacion de software.
e Definicion de clases y responsabilidades.
e Herencia y polimorfismo. Binding dinamico.
e Relaciones de conocimiento y composicion. Objetos contenedores.

Lenguajes de modelado orientados a objetos
e Ellenguaje de Modelado Unificado (Unified Modeling Language).
¢ Diagramas de Clases.

Testing de Unidad.

Factores que favorecen la aparicion de errores.

Comparacion entre diferentes alcances en el testing: Unidad, Funcional, Regresion.
Frameworks para implementar Test de Unidad. XUnit.

Cobertura y buenas practicas de Test de Unidad.

Test-Driven Development

Patrones de diseio
e Introduccién a patrones de disefio. Definicion.
e Tipos de patrones de disefo de software.
e Catalogo “GoF” de patrones de disefo.

Refactoring.
e Definicion.
e Anadlisis de los refactorings mas importantes.
e Relacién entre refactoring y patrones. Refactoring hacia patrones.



==
e % UNIVERSIDAD

e R NACIONAL

W7/ DE LA PLATA

FACULTAD DE INFORMATICA

Métodos Agiles.
e Precepto fundamental sobre el cambio de cddigo.
e Elementos fundamentales de los métodos Agiles: Usuarios, Testing,
Integracion Continua y Refactoring.

Calidad interna del software.
e Andlisis de problemas de disefio y su solucion mediante refactorings.
e Deuda técnica: costeo de rectificar los problemas

MODALIDAD DE EVALUACION Y ACREDITACION

La evaluacion de la materia es a través de un trabajo practico integrador con entregas
parciales. Las entregas parciales estan disefiadas con la funcién de poner rapidamente en
practica los conocimientos que se van abordando durante la cursada de la materia. El
trabajo integrador involucra la totalidad de técnicas y herramientas vistas durante el curso
de la materia. En el trabajo se utiliza JavaScript como lenguaje orientado a objetos, junto
con diferentes herramientas o frameworks para cada objetivo de aprendizaje, como NodeJS
(para programacion de backend) o Jest (para programar tests de unidad).

La cursada se acreditara con la aprobacion de la primera entrega parcial. La calificacion
final del alumno es en base al promedio de las 3 entregas.

El trabajo practico se desarrolla en grupos de 2 o 3 alumnos.

RECURSOS Y MATERIALES DE ESTUDIO

El curso propone 13 encuentros sincrénicos en total. Estos se realizan por videoconferencia,
mediante el uso de la plataforma virtual de ensefianza Webex que permite diferentes
maneras de interaccion inmediata con los alumnos. Se requiere de asistencia a 10 de los
13 encuentros por VC (aproximadamente 75% de asistencia).

Los materiales de estudio son:
e Textos digitales: textos de lectura de referencia en en las tematicas tratadas durante el
curso. Los textos de referencia son recuperados de la biblioteca del postgrado, revistas
y/o de repositorios.
e Material preparado por los docentes del curso.
e Presentaciones digitales y materiales multimediales sobre el tema (de produccién

propia)



==
e % UNIVERSIDAD

e R NACIONAL

W7/ DE LA PLATA

FACULTAD DE INFORMATICA

ACTIVIDADES EXPERIMENTALES Y DE INVESTIQACION PLANIFICADAS PARA LA
APROPIACION DE LOS SABERES Y LA EVALUACION

Actividades practicas:

Desarrollo de trabajos practicos parciales luego de cada eje tematico de la materia. Estos
trabajos conforman un uUnico trabajo integrador, y se complementan con actividades de tipo
taller durante las clases.

Actividad 1: luego del dictado de los primeros temas, se trabaja sobre un modelo para
que los alumnos puedan realizar un disefio e implementarlo sobre la tecnologia a utilizar en
el curso (JavaScript) para empezar a familiarizarse con la misma. Se trabajara con
diagramas UML. Programaran tests de unidad sobre su codigo, aplicando las buenas
practicas dadas en clase y preparando el campo para los temas siguientes como
refactoring.

Actividad 2: luego de presentarse los contenidos patrones de disefio, se extendera el
modelo previamente trabajado para incorporar funcionalidad. Esta funcionalidad requerira
del descubrimiento e implementacion de patrones de disefio clasicos. Se debera explorar
variantes de implementacién y justificar su aplicacion. Adicionalmente, se prepararan
ejercicios puntuales sobre patrones para trabajar en clase, de manera de reforzar y fijar los
contenidos.

Actividad 3: la ultima entrega del trabajo integrador se enfocara en refactoring. Se
realizara un analisis de deuda técnica sobre lo entregado hasta el momento, evaluando los
puntos que podrian traer problemas de mantenimiento en el corto 0 mediano plazo. Se
priorizaran dichos problemas, y luego se elegiran los mas importantes para realizar una
tarea de refactoring. Esta actividad estara ademas sostenida por los tests de unidad
realizados previamente.

Investigacion:

Los alumnos analizaran articulos de investigacién de la bibliografia complementaria con
el objetivo de estudiar y comparar métodos agiles y técnicas de programacién orientada a
objetos, y herramientas actuales de desarrollo, testing y refactoring. Estos articulos seran
discutidos luego durante los encuentros sincronicos y a través del espacio de foro de
consultas de la plataforma virtual de ensefianza.



==
e % UNIVERSIDAD

e R NACIONAL

W7/ DE LA PLATA

FACULTAD DE INFORMATICA

BIBLIOGRAFIA BASICA

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 2018.
Rubin, K. Essential Scrum: A practical guide to the most popular Agile process. Addison Wesley.
2012.

Antani, V., & Stefanov, S. Object-Oriented JavaScript. Packt Publishing Ltd. 2017.

Timothy Budd. “An Introduction to Object-Oriented Programming”. Addisson-Wesley. (2008)
Rebecca Wirfs-Brock. Object Design: Roles, Responsibilities, and Collaborations, Addisson-
Wesley 2003.

Gamma, Helm, Johnson, Vlissides. Design Patterns. Elements of Reusable Objects Oriented
Software. Addison-Wesley, Professional Computing Series. 1995.

Joshua Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.

Meszaros, G. xUnit test patterns: Refactoring test code. Pearson Education. 2007

BIBLIOGRAFIA COMPLEMENTARIA

Matt Weisfeld. The Object-Oriented Thought Process, Third Edition, Pearson Education,
Addison Wesley. (2008), ISBN-13: 978-0-672-33016-2

Rebecca Wirfs-Brock. Design for Test. IEEE Software 26(5): 92-93 (2009)

Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, Olaf Zimmermann: Twenty Years of
Patterns' Impact. IEEE Software 30(6): 88 (2013)

Rebecca Wirfs-Brock: Designing with an Agile Attitude. IEEE Software 26(2): 68-69 (2009)
Rebecca Wirfs-Brock: Looking for Powerful Abstractions. IEEE Software 23(1): 13-15 (2006)
Martin Fowler, Kendall Scott. “UML Distilled”. Addisson-Wesley. (2004)

Kent Beck and Cynthia Andres. Extreme Programming Explained. Addison-Wesley, 2005.
Crockford, D. Javascript: the good parts: the good parts. " O'Reilly Media, Inc.". 2008.

Kent Beck. Simple Smalltalk Testing: With Patterns. http://www.xprogramming.com/testfram.htm
Stephane Ducasse. SUnit Explained. http://www.iam.unibe.ch/~ducasse/

Chen, R., & Miao, H. (2013, June). A selenium based approach to automatic test script
generation for refactoring javascript code. In 2013 IEEE/ACIS 12th International Conference on
Computer and Information Science (ICIS) (pp. 341-346). IEEE.

Burchard, E. (2017). Refactoring JavaScript: Turning Bad Code Into Good Code. " O'Reilly
Media, Inc.".

Fard, A. M., & Mesbah, A. (2013, September). Jsnose: Detecting javascript code smells. In 2013
IEEE 13th International Working Conference on Source Code Analysis and Manipulation
(SCAM) (pp. 116-125). IEEE.

Silva, L. H., Valente, M. T., & Bergel, A. (2017, May). Refactoring legacy JavaScript code to use
classes: The good, the bad and the ugly. In International Conference on Software Reuse (pp.
155-171). Springer, Cham.

Alves, N. S., Mendes, T. S., de Mendonga, M. G., Spinola, R. O., Shull, F., & Seaman, C.
“Identification and management of technical debt: A systematic mapping study”. Information and
Software Technology 70, 100-121. 2016.

Kruchten, P., Nord, R. L., & Ozkaya, I. “Technical debt: From metaphor to theory and practice”.
leee Software 29(6), 18-21. 2012.

Letouzey, JL. “The SQALE Method for Evaluating Technical Debt”. In Third International
Workshop on Managing Technical Debt (MTD) (pp. 31-36). IEEE. 2012



Y
R UNIVERSIDAD

ok NACIONAL
W%/ DE LA PLATA

FACULTAD DE INFORMATICA

Li, Z., Avgeriou, P., & Liang, P. “A systematic mapping study on technical debt and its
management”’. Journal of Systems and Software, 101, 193-220. 2015.

Lim, E.; Taksande, N. & Seaman, C. “A Balancing Act : What Software Practitioners Have to
Say about Technical Debt”, IEEE Software 29 (6), 22-27. 2012.

Diaz, O., & Arellano, C. (2015). The augmented web: rationales, opportunities, and challenges
on browser-side transcoding. ACM Transactions on the Web (TWEB), 9(2), 1-30.

José Matias Rivero, Matias Urbieta, Sergio Firmenich, Mauricio Witkin, Ramén Serrano, Viviana
Elizabeth Cajas, Gustavo Rossi:Improving Legacy Applications with Client-Side Augmentations.
ICWE 2018: 162-176



