

Universidad Nacional de La Plata

Facultad de Informática

Thesis submitted in fulfillment of the requirements for the degree of
Doctor (Ph.D.) in Informatics Science

Engineering Accessible Web Applications.
An Aspect-Oriented Approach

 Author: Mg. Adriana E. Martín
Supervisor: Ph.D. Alejandra Cechich
Co-Supervisor: Ph.D. Gustavo Rossi

September 2011

7

 ABSTRACT

Building Accessible Web applications is nowadays a must. Every day more and more

users with different abilities and/or temporally or permanent disabilities are accessing

the Web, and many of them have special difficulties in reaching the desired information.

However, the development of this kind of Web software is complicated for several

reasons. Though some of them are technological, the majority are related with the need

to compose different and, many times, unrelated design concerns which may be

functional as in the case of most of the specific application’s requirements, or non-

functional such as Accessibility itself.

Even though, today there is a huge number of tools and proposals to help developers

assess Accessibility of Web applications, looking from the designer perspective, there is

no such a similar situation. It seems that creating accessible Web sites is more

expensive and complicated than creating Web sites and then assessing/modifying them.

Although this feeling may be largely true, the benefits of modelling Accessibility at

early design stages outweigh the needs of a developer to implement that Accessibility.

In this thesis, we present a novel approach to conceive, design and develop Accessible

Web applications in an Aspect-Oriented manner. In order to reach our goal, we provide

some modeling techniques that we specifically developed for handling the non-

functional, generic and crosscutting characteristics of Accessibility as a quality factor

concern. Specifically, we have enriched User Interaction Diagrams (UIDs) with

integration points, which are used to reason and document Accessibility for activity

modeling during user interface design. Then by instantiating a Softgoal Interdependency

Graph (SIG) template with association tables, we work on an abstract interface model

(composed by ontology widgets) to obtain a concrete and accessible interface model for

the Web application being developed. We use a real application example to illustrate

our ideas and point out the advantages of a clear separation of concerns throughout the

development life-cycle.

8

RESUMEN

Desarrollar aplicaciones Web Accesibles es en la actualidad una necesidad. Cada día

más y más usuarios con capacidades diferentes y/o discapacidades temporales o

permanentes acceden a la Web, y muchos de ellos tienen dificultades especiales para

obtener la información deseada. Sin embargo, el desarrollo de este tipo de software Web

es complicado por varias razones. Si bien algunas de estas son de índole tecnológicas, la

mayoría están relacionadas con la necesidad de componer intereses de diseño distintos y

muchas veces no relacionados entre sí, los cuales a su vez pueden ser funcionales, como

lo son la mayoría de los requerimientos específicos de una aplicación, o no-funcionales,

como lo es la Accesibilidad.

Aún existiendo hoy en día un gran número de herramientas y propuestas para ayudar a

los desarrolladores en la evaluación de la Accesibilidad de las aplicaciones Web, la

situación no es la misma al observar desde la perspectiva del diseñador Web. Parece ser

que diseñar sitios Web accesibles es más costoso y complejo que crear sitios Web y

luego evaluarlos/modificarlos. A pesar de que este sentimiento puede ser ciertamente

verdadero, los beneficios al modelar la Accesibilidad en etapas tempranas del diseño

superan ampliamente las necesidades de un desarrollador al implementar esa

Accesibilidad.

En esta tesis, presentamos un enfoque original para concebir, diseñar y desarrollar

aplicaciones Web Accesibles con una modalidad Orientada a Aspectos. Para alcanzar

nuestro objetivo, ofrecemos algunas técnicas de modelado que desarrollamos

específicamente para manejar las características no-funcionales, genéricas y

transversales de la Accesibilidad como un interés de factor de calidad. Específicamente,

enriquecimos los “User Interaction Diagrams” (UIDs) con puntos de integración, los

cuales usamos durante el diseño de la interfaz de usuario, para razonar y documentar la

Accesibilidad en la actividad de modelado. Luego, instanciando la plantilla del

“Softgoal Interdependency Graph” (SIG) con las tablas de asociación, trabajamos en el

modelo de interfaz abstracta (compuesta por “ontology widgets”) para obtener un

modelo de interfaz concreta y accesible de la aplicación Web en desarrollo. Para ilustrar

nuestras ideas y señalar las ventajas de una clara separación de intereses durante el ciclo

de vida de desarrollo, utilizamos un ejemplo de aplicación real.

10

Indice

1.! INTRODUCTION ... 14!

1.1 Context and Motivation ... 14

1.2! Objectives .. 18!

1.3! Research Context ... 19!

1.4! Structure ... 20!

2.! ACCESSIBILITY WITHIN WE APPROACHES .. 23!

2.1! Web Accessibility .. 23!

2.2! Proposals for Developing Accessible Web Applications 27!

2.2.1! Providing a Student of his/her Faculty Site .. 28!

2.2.2! Automatic Annotations for Accessibility. ... 29!

2.2.3! Rules for an Accessible Composition ... 33!

2.2.4! Adaptation to tackle Crosscutting Concerns. .. 36

2.2.5! User Needs through Personas ... 41

2.2.6! Model-Driven Development with AWA. .. 43

3.! BACKGROUND OF OUR PROPOSAL .. 47!

3.1! Introducing the Basis ... 47

3.2! Aspect-Oriented Composition ... 47

3.2.1! Aspectual Implementations: Advices and Pointcuts ... 49

3.3! Reference Frameworks and Ontologies ... 51

3.3.1! Design Decisions within a User Interface Framework 51

3.3.2! An Ontology to share Abstract Interface Vocabulary 53

3.4! User Interaction Diagrams ... 55

3.5! Softgoals Interdependency Graphs .. 57

3.6! Web Content Accessibility Guidelines Documents ... 58

11

4. AN APPROACH FOR ENGINEERING ACCESSIBLE

WEB APPLICACTIONS .. 61 !

4.1! Our Approach in a Nutshell ... 61

4.2! Identifying Application’s Requirements that Involve Accessibility Needs 63

4.3! Specifying Accessibility Concrete Concerns ... 65

4.3.1! Using UIDs with Integration Points Technique .. 65!

4.3.2! Applying the SIG Template .. 67!

4.4! Discovering Crosscutting and Applying Aspects .. 70

4.5! Designing with Accessible Interface Widgets ... 72

4.5.1! A Mapping between Onlology Concepts and HTML Elements 72!

4.5.2! Association between Ontology Concepts-HTML Elements-WCAG

Checkpoints ... 75

5.! APPLYING OUR PROPOSAL ... 84!

5.1! A Case Study ... 84

5.2! Our Proposal Step-by-Step on the Field .. 86

5.3 A Supporting Tool for Our Proposal ... 104

5.3.1! Architecture’s Overview: Layers and Classes .. 105!

5.3.2! Tool’s Resources: XML Schemas and Specifications 107!

5.3.3! Tool’s User Interfaces ... 117

5.3.4! Some Insights about the Tool .. 120

6.! COMPARING OUR PROPOSAL .. 123!

6.1! Comparison Criteria ... 123

6.2! Discussion .. 127

6.3! Focusing on Ours ... 137

6.3.1! Migrating to WCAG 2.0 ... 138!

7.! CONCLUSIONS AND FUTURE WORK .. 142!

7.1! Conclusions .. 142

7.2! Future Work ... 144

12

7.3! Publications related to this Thesis ... 145

7.3.1! Journals ... 145!

7.3.2! Book Chapters ... 146!

7.3.3! International Conferences ... 146!

7.3.4! National Conferences .. 147

7.4! Other related Publications ... 148

7.4.1! International Conferences ... 148

7.4.2! National Conferences .. 149!

APPENDIX I – WCAG 1.0 .. 151

APPENDIX II – WCAG 2.0 ... 178!

REFERENCES .. 212!

13

14

1. INTRODUCTION

1.1 Context and Motivation

Since 1999, when the W3C1-WAI2 introduced the “Web Content Accessibility

Guidelines 1.0” (WCAG 1.0) [45] as a set of guiding principles, the fact that

Accessibility is a main topic in Web design upon which the success of a Web

application depends, has become a landmark statement. However, developing accessible

Web applications is usually hard for several reasons.

Firstly, there is a significant knowledge gap between developers and Accessibility

specialists. Most developers do not have the necessary skills or training in designing and

coding for Accessibility, and most Accessibility specialists have, in turn, limited

developing practice [22]. Thus, although there are many available tools and published

sources of information on Web Application Accessibility, existing Web Accessibility

guidelines and principles (and therefore, experts on these guidelines) do not address

additional design issues that may typically arise when developing complex Web

applications. To make matters worse, there is little evidence of design approaches

dealing with Accessibility from the beginning of the design process. In most cases,

Accessibility is regarded as a programming issue or even dealt with when the Web

application is already fully developed and, consequently, the process of making this

application accessible involves significant redesign and recoding, which might be out of

the scope of the project and/or hardly affordable [22]. As we will show next, the main

problem with Accessibility is that it is a non-functional software concern, which affects

(crosscuts) other application concerns. Generally speaking, a non-functional

requirement is a software requirement which does not describe what the system will do

(functional requirement), but how the system will do it; for example, performance

requirements, modularity requirements, or quality attributes, which represent constraints

on the services or functions offered by a system [39].

1 The World Wide Web Comsortium at http://www.w3.org/

2 The Web Accessibility Initiative at http://www.w3.org/WAI/

15

Although Accessibility has not yet gained much recognition as a crucial non-functional

requirement like security, performance, accuracy and usability; it is a vital attribute for

people with disabilities. Moreover, Accessibility is a generic concern that may comprise

dozens of specialized concerns and, therefore, many requirements associated with these.

For example, at the application-level, Accessibility can be specialized according to the

kind of Accessibility support given to the user, where specific requirements related to

the user’s layout and the user’s technology supports are considered. While the former

ensures an accessible user’s interaction, the user’s technology support guarantees

browsing regardless of the user’s assistive device and further, new requirements related

to current and earlier assistive devices characteristics are associated separately --i.e.

“user agents” and “until user agents” respectively as the distinction made by the W3C’s

UAAG 1.0 [48]. The term “user agent” is used by the W3C as a generic description for

any software that retrieves and renders Web content for users, such as browsers, mobile

phones, screen readers, etc. On the other hand, the term “until user agent” is used by the

W3C referring to “user agents” that require developers to provide additional support for

Accessibility.

As another example, at the meta-level, Accessibility can be specialized according to

meta-features like compliance design and content order concerns. The first one means

conformance to some Web Accessibility design principles that are articulated by

guidelines, regulations, standards or laws, while the second one refers to how to

organize the Web pages content based on research reports and studies like quality in use

surveys, conducted experiences, patterns catalogues, etc. In both cases, these specialized

concerns have their associated requirements.

Finally, and as an example of the model-level, Accessibility can also comprise different

concerns according to the methodological phase for the development of the Web

application. Normally, these efforts are focalized on the interface model by applying

some conformance assessment criteria, which establish associated requirements for

abstract and concrete interface widgets.

In this work we introduce our design approach, which proposes to include Accessibility

concerns systematically within a methodology for Web application development.

Firstly, to find out how Accessibility concerns should be introduced in the development

16

life cycle, we analyzed how mature Model-Driven3 Web Engineering (WE4) methods5,

such as UWE [24], OOHDM [36], OOWS [18] or WSDM [13], face this cycle. We

realized that all of them comprise several activities to focus on some specific design

concerns; however, since OOHDM fulfill many of our expectations, we decided to join

our modeling approach to this particular WE method. As an example of the rational of

choosing OOHDM as our host WE approach, we have to mention the different views

provided by OOHDM at the user interface (UI) model. This fine-grained treatment

allows us to move from abstract interface elements, which are those from the widget

ontology [36], to concrete interface elements --e.g. HTML elements, and link both

levels of abstraction from a UI design perspective [27] to WCAG checkpoints.

Secondly, since designing accessible Web applications involves the analysis of different

interests, we proposed to use Aspect-Oriented Software Development (AOSD6) design

principles to support the construction of accessible user interfaces. The fact that we

choose aspect orientation to develop our proposal ensures handling naturally the non-

functional, generic and “crosscutting”7 characteristics of the Accessibility concern.

3 Model-Driven Software Development (MDSD) is a software engineering methodology that focuses on

creating and exploiting domain models –i.e. abstract representations of the knowledge and activities that

govern a particular application domain, rather than on the computing (or algorithmic) concepts.

4 Web Engineering (WE) is a specific domain in which MDSD can be successfully applied to implement

systems that exploit the Web paradigm. WE is the application of systematic and quantifiable approaches,

such as concepts, methods, techniques, tools, to cost-effective requirements analysis, design,

implementation, testing, operation, and maintenance of high-quality Web applications.

5 These development proposals are also known as Model-Driven Web Development (MDWD) approaches

because they are concerned to provide methodologies and tools for the design and development of most

kinds of Web applications.

6 Aspect-Oriented Software Development (AOSD) focuses on the identification, specification and

representation of “crosscutting” concerns and their modularization into separate functional units as well

as their automated composition into a working system.

7 “Croscutting” is a term used for certain type of functionality whose behavior causes code spreading and

intermixing through layer and tiers of an application which is affected in a loss of modularity in their

classes. Quality requirements (such as Accessibility), exception handling, validation and login

managements are all examples of this common functionality that is usually described as “crosscutting

concerns” and should be centralized in one location in the code where possible.

17

As a motivating example and to introduce properly the ideas behind our modeling

approach, let us suppose a typical login Web page whose purpose is aiming a student’s

identification at his/her university system, such as the SIU Guarani student registration

system that is used by a number of Argentine universities8. Figure 1.1 shows the page

for the student’s login that provides a user interface composed of HyperText Markup

Language (HTML) elements, such as labels and text fields. To help to an accessible

interaction experience these HTML elements must fulfill some Accessibility

requirements, which crosscut the same software artifact (the Web page for student’s

login). For example, and as we will see in detail later, at the presentation level an

HTML label element is a basic layout Accessibility requirement for many other HTML

elements.

Figure 1.1: A Student’s Login Web page example

Since a Web page for student’s login requires at least two text field elements (for

student’s ID and password respectively), the presence of their respective label elements

must be tested. So, to propitiate an accessible interaction experience on behalf of the

student, this layout requirement must crosscut the same software artifact (the Web page)

more than once, accordingly to the number of text field elements included in the

presentation. Additionally, it is highly important to consider the positioning of the label

8 For example the SIU Guarani registration system, as used by the National University of Córdoba at

http://www.psi.unc.edu.ar/sistemas/sistemas-de-informacion-academica/siu-guarani

18

element with respect to a text field element; this technological requirement for “until

user agents” [48] --i.e. earlier “user agents”, also crosscuts the Web page. Clearly this

kind of behavior perfectly fits the “scattering” and “tangling” problems9, which

motivate the main AOSD principles. Since these two Accessibility requirements

(presence and positioning of the label elements), are “scattered” in the Web page with a

pair of label-text field HTML elements, the Web page is “tangled” with these

Accessibility requirements. It seems natural therefore to address Accessibility using the

Aspect-Oriented Software Development (AOSD) approach and, it is not just a

coincidence that during this work we refer to Accessibility as a “concern”. Besides the

fact that Accessibility has become a basic quality attribute to any Web application and

to improve the evolution of the Web in general, the term "concern" from the AOSD

perspective describes accurately the Accessibility features related to its nature. By using

the AOSD paradigm we can avoid typical problems of “crosscutting” concerns, such as

those shown in the previous Web page example. Our proposal applies these concepts by

treating Accessibility as a first-class concern in the context of the OOHDM [36] WE

approach. Specifically, we propose the early capture of specific Accessibility concerns,

which involve user interactions and activities with the application’s interface by

introducing some additional extensions to the User Interaction Diagram (UID) [44]

technique. As we see in Section 5.3, we also propose a supporting tool to assist our

approach.

Thus, looking for a comprehensive response to the problem of developing accessible

user interfaces (UI) for Web applications since the early stages of design, we propose

the following objectives.

1.2 Objectives

The main objective of this work is to define a WE approach (process and techniques)

to conceive, design and develop accessible Web applications using Aspect-Oriented

9 “Scattering” and “Tangling” symptoms are typical cases of “crosscutting concerns” and they often go

together, even though they are different concepts. A concern is “scattered” over a class if it is spread out

rather than localized while a concern is “tangled” when there is code pertaining to the two concerns

intermixed in the same class (usually in a same method).

19

concepts, which enable to address Accessibility early from requirements and through

design to implementation.

As secondary goals we state:

1. Studying the state-of-art of Accessibility proposals in general, and in particular,

focalizing on those proposals for designing Web applications with the Accessibility

concern in mind.

2. Studying deeply and applying some relevant related work, selected as a result of the

previous goal, to a proposed case study.

3. Defining a process for designing Web applications with Accessibility and providing

specific techniques that take advantages of Aspect-Oriented concepts to address

Accessibility properly and from early stages of design.

4. Applying our proposal to a case study.

5. Proposing a supporting tool to help developers in applying our proposal.

6. Comparing and discussing the main characteristics of our proposal and the relevant

related work selected as a result of previous goals.

1.3 Research Context

This thesis has been developed and partially supported by the following research

projects:

! UNComa project 04E/072. Title: Identificación, Evaluación y Uso de

Composiciones Software. Period: 2008-2011. Director: Dr. Alejandra Cechich.

! UNPA-UACO project 21/B107. Title: Mejora de Proceso de Selección de

Componentes para Sistemas de Información Geográficos. Period: 2010-2011.

Director: Dr. Alejandra Cechich.

! UNLP project PICT-PAE 2187. Title: Desarrollo de Familias de Aplicaciones Web

20

y Context Aware. Period: 2009-2011. Director: Dr. Gustavo Rossi.

! UNComa project 04/E059. Title: Mejora del Proceso de Desarrollo de Software

Basado en Componentes. Period: 2005-2007. Director: Dr. Alejandra Cechich.

1.4 Structure

The structure of this thesis is organized as follow:

! In Chapter 2, Accessibility within WE approaches, we firstly introduce Web

Accessibility, mainly focusing on those features that are relevant for our work.

Then, we concentrate on introducing properly some selected related work and

applying them to a proposed case study.

! In Chapter 3, Background of our Proposal, we introduce four key topics that we

will use throughout the rest of the work, since they are the conceptual basis of our

proposal.

! In Chapter 4, An Approach for Engineering Accessible Web Applications, we first

provide a general overview of the model we envisage to deal with Accessibility

concerns within a Web engineering approach. Then, we conduct a detailed

description of the proposed process and techniques for implementing our proposal

step-by-step.

! In Chapter 5, Applying our Proposal, we carry out clearly the implementation of

our approach following the step-by-step process as we described in Chapter 4. To do

so, we propose a complete case study composed of 3 (three) level-deep navigation

and 2 (two) optional help anchors. We also introduce a supporting tool that we

specially develop to help developers on the design process when applying our

proposal.

! In Chapter 6, Comparing our Proposal, we first introduce an evaluation framework

that we develop to provide proper comparison criteria for the approaches. Then, we

carry out the comparison and develop a discussion about the main characteristics of

the related work and our proposal.

21

! In Chapter 7, Conclusions and Future Work, we conclude summarizing issues from

the designer perspective and as a result of our experience gathered at early stages of

the Web development process. Then, we state some open questions that lead to

future research.

22

23

2. ACCESSIBILITY WITHIN WE APPROACHES

2.1 Web Accessibility

Generally speaking, in the World Wide Web (WWW), where users have the freedom to

choose what best meets their expectations, the quality of a user interface (UI) can make

the difference between maintaining the Web site competitiveness (or not) within its

domain --e.g. e-Business and B2B10, e-Education (e-Teaching and e-Learning), e-

Government, GIS11 (GeoWeb, Web Mapping and Web GIS), etc., and even compromise

the Web site survival.

In May 2006 foreword by Molly Holzschlag said [41]:

“…Berners-Lee’s vision has always had to do with the human side of the Web. After

all, it’s not machines that use the Web, but people… Accessibility is not about

disabilities; rather, it’s about people getting to shared information that the vision of

the Web has made manifest…”

Web Accessibility is dedicated to achieving the access to the Web by everyone,

regardless of their permanent or temporary disabilities, age-related problems,

generational gaps, personal skills and preferences, culture and developed education, etc.

While it is true that Web Accessibility emerged initially to help accessing the Web to

people with disabilities, currently there is no doubt about the spectrum of benefits that

Accessibility provides to the universe of Web users. In this thesis, we have chosen not

to provide several definitions of Web Accessibility, as is usually done to describe its

10 Business to Business (B2B) also known as e-Biz, is the exchange of products, services, or information

between businesses rather than between businesses and consumers.

11 A Geographic Information Systems (GIS) is a system of hardware and software used for storage,

retrieval, mapping, and analysis of geographic data. GeoWeb consists of location-aware Web

technologies usually manifested on the WWW; Web Mapping then refers to those online applications that

permit users to view or create maps on a Web platform, usually with limited or no GIS analysis; while

Web GIS then refers to GIS that use Web technologies as a method of communication between the

elements of a GIS.

24

scope and contributions (these definitions are all available at the Internet12). Instead, we

prefer to introduce Table 2.1 that clearly shows how Accessibility can help all users to

face accessing the Web at different life situations; after all, we all have different skills

and abilities.

Table 2.1: Web Accessibility benefits the entire universe of Web Users

Disability People with Disability People “without Disability”

Vision Blinds Users who are driving in the
dark…

Low vision Low-vision Users Users who are using a device
with a small display...

Hearing Deafs Users who are in forced silence
(library) or using music players
with headphones…

Low hearing Low-hearing Users Users who are in noisy
environments…

Motor impaired Motor impaired Users due to
illness or traumatic injuries
(permanent or temporary)

Users who are wearing tight
clothes, protective clothing,
overalls, workware…
Users on a moving and/or
unstable vehicle --e.g. a train...

Cognitive
impaired

Users who are limited in their
abilities to process and
memorize information, to take
decisions, to learn, to
performe intellectual tasks.

Users who are tired, fatigued,
distracted, worried, sleepy,
drunk...

Communicational
impaired

Users having difficulties to
understand linguistic and
textual.

Users who have no knowledge of
the language, slogans or
symbols...

The Word Wide Web Consortium (W3C) is one of the main referents of Web

Accessibility and has worked for more than ten years in the development of a standard

called Web Content Accessibility Guidelines (WCAG13), which is considered a

benchmark for most of the laws on Information Technology and Communication

worldwide. The WCAG has two documents, the WCAG 1.0 [45] and the WCAG 2.0

12 W3C (2005) definition at http://www.w3.org/WAI/intro/accessibility.php; ISO/TS 16071 (2003)

definition at http://www.iso.org/iso/catalogue_detail.htm?csnumber=30858; Hull (2004) definition at

http://ausweb.scu.edu.au/aw05/papers/refereed/arora/paper.html; Fourney and Carter (2006) definition at

http://userlab.usask.ca/papers/IEA06DF-JC.pdf; etc.

13 WCAG overview at http://www.w3.org/WAI/intro/wcag

25

[46], whose stable specifications were released in 1999 and 2008 respectively. Since

their longstanding presence in the Accessibility arena, the WCAG 1.0 has provided the

basis for the promulgation of other Accessibility standards and legislation in several

countries. For example, this is the case for the US Section 508 [38], the UK PAS 78

[34] and the Italian Legislation on Accessibility [40]. Currently, the migration process

from WCAG 1.0 to WCAG 2.0 of these standards and legislation is taking place. In

Argentina, Web Accessibility is an issue that has been recently included in the State's

agenda. The legislation 26.653 called “Guía de Accesibilidad para Sitios Web del Sector

Público Nacional14”, which adheres to WCAG 1.0 document, was approved by

Resolution 69/2011 on June 27th 2011. In August 2011, Argentina became a member of

the W3C15. We will return on WCAG and its documents in Section 4.6, and then also in

Section 7.3.1 where we will explain how we carry out the migration of our proposal.

Since 1999, when the first W3C Accessibility document was released, a number of tools

and approaches have emerged and are available to support Web developers evaluating

Accessibility of existing Web applications. However, Accessibility has not yet gained

enough recognition as a crucial non-functional requirement such as other quality factors.

This situation may be due to several reasons, but probably, it had much to do with the

way Accessibility was first introduced to Web developers --i.e. by showing only its side

committed with disability. This lack of knowledge within developer’s community,

prevented them from getting involved with the cause, and as a consequence, the work

has been addressed mostly by Accessibility specialists and entities engaged with

disability. As we shall see next in Section 2.2, the status is worse from a design

perspective, since it is a fact that there are not many efforts considering Accessibility at

early stages of the development process.

At this point, we would like to perform some considerations concerning to the

relationship between Accessibility and Web development stages. As we already said in

Chapter 1, Web Engineering (WE) focuses on stages, which create and exploit domain

models, to face the development life cycle of Web applications. Almost every mature

14 Access to Public Information by Law 26.653 at

http://www.infoleg.gov.ar/infolegInternet/anexos/175000-179999/175694/norma.htm

15 Argentina became a member of the W3C at http://www.puntogov.com/nota.asp?nrc=2641

26

WE method proposes the following five stages, each one delivering its respective

model: requirements, conceptual, navigation, user interface and implementation. In the

best cases, Accessibility is submitted to user interface (UI) codification and

implementation stage. In most cases, Accessibility is addressed when the application is

already fully developed, and in consequence the process of making this application

accessible involves significant redesign and recoding, which may be considered outside

the project’s scope and budget [22].

Finally, when we talk about Web Accessibility, we must specify the target of the

Accessibility efforts since to establish the client-server Web relationship, several

components are required. This means that Web Accessibility depends on these

components working together and improvements in specific components could

substantially improve Web Accessibility. Thus, for example, we can evaluate the

Accessibility of the following components: (i) User agents, client devices or assistive

technologies, such as PCs and notebooks, cell phones, iPods and iPads, screen readers16,

screen magnifiers17, braille keyboards18, PDAs, etc., (ii) Web browsers, such as Safari,

Mozilla Firefox, Internet Explorer, Opera, etc., (iii) Authoring tools –i.e. software that

helps creating Web sites19, (iv) Web pages --i.e. the content, structure, presentation and

layout of Web documents and (v) Web navigation --i.e. how the Web user moves from

one Web page to another when traveling through the cyberspace. The W3C-WAI

provides valuable standards to improve the Accessibility of these components20 that are

16 Software for the visually impaired users that reads the contents of a computer screen, converting the

text to speech.

17 A screen magnifier is software that interfaces with a computer's graphical output to present enlarged

screen content.

18 Portable units used to take notes using the Braille system; quite often use chording techniques (key

combinations), but some units are designed with a traditional keyboard.

19 A list of some Authoring tools and their comparison at

http://www.edb.utexas.edu/minliu/multimedia/Compare%20Web%20Authoring%20Tools.pdf

20 W3C-WAI guidelines and techniques at http://www.w3.org/WAI/guid-tech.html

27

called “Essential Components of Web Accessibility”21. As examples of these standards,

we already mentioned the WCAG documents [45] [46], which are focused on

explaining how to make accessible the Web content component and, the User Agents

Accessibility Guidelines (UAAG) [48] document22, which provides guidelines for

designing user agents that lower barriers to Web accessibility for people with

disabilities. As we are especially interested in developing accessible Web applications,

our work focuses its efforts on designing user interfaces (UI) by applying the WCAG

recommendations to propitiate better access to content, help navigation and improve the

user experience while interacting with the application.

2.2 Proposals for Developing Accessible Web Applications

This section reviews the most relevant proposals that aim to consider the Accessibility

concern in at least, some of the stages of the development life-cycle. To provide a more

complete description and also to perform a more thorough analysis of these proposals,

in Section 2.2.1 we introduce a case study that we use to apply each one of them.

Figure 2.1: A simplified University home page example

21 W3C-WAI: strategies, guidelines, resources to make the Web accessible to people with disabilities at

http://www.w3.org/WAI/intro/components.php

22 UAAG overview and UAAG 2.0 working draft at http://www.w3.org/WAI/intro/uaag.php

28

2.2.1 Providing a Student of his/her Faculty Site

In this section we present the typical situation faced by a college student when looking

for his/her respective Faculty site. Let us assume that the student enters the home page

of the University of which depends the desired Faculty and this home page has the

appearance illustrated in Figure 2.1.

As we can see in Figure 2.1 the page offers the student a set of related links to the

Faculties that make up the University. The name of each Faculty is an anchor the

student can use to browse to his/her Faculty site. Since links are navigation mechanisms

that create a set of paths a user may take through a site, it is very important to keep a

consistent style of presentation for links, as for every interface of components relevant

to the interaction interface-functionality. Thus, taking into account Accessibility

recommendations for links will allow users to locate and skip navigation mechanisms

more easily to find important content. This helps people with learning and reading

disabilities but also makes navigation easier for all users. Predictability will increase the

likelihood that people will find information at your site, or avoid it when they so desire

[45]. Returning to the University home, Figure 2.2 illustrates the corresponding HTML

code for this page example.

Figure 2.2: The HTML code for the University home page example

As we can see at lines 12, 13, 14, 15 and 16 of Figure 2.2, a set of five HTML a

elements is defined for a “skip” option and four Faculties, and they are enclosed with an

HTML div element at lines 11 and 17 of the styling class “adjacentLinks”. Following,

we use this simple example to discuss the way the five approaches cited at this chapter

work for improving more accessible user interface designs.

29

Figure 2.3: The WSDM with Dante from [51]

2.2.2 Automatic Annotations for Accessibility

The main goal in Plessers et al. [35] is to generate annotations for visually impaired

users automatically from explicit conceptual knowledge existing during the design

process. The approach integrates the Dante [52] annotation process into the Web Site

Design Method (WSDM) [13] that allows Web sites and Web applications to be

developed in a systematic way. The annotations are generated from explicit conceptual

knowledge captured during the design process by means of WSDM’s modeling

concepts. These WSDM’s modeling concepts, used in the different phases, are

described using the WSDM OWL23 ontology. To generate code the authors establish a

transformation process that takes the conceptual design models as input and generates a

set of annotations as a consequence. The transformation process consists of two

annotation steps: authoring and mobility, which resemble the original annotation

23 OWL Web Ontology Language at http://www.w3.org/TR/owl-ref/

30

process of the Dante approach. The difference is that the authoring annotation in Dante

is manual and based on the HTML source code of the Web site. The integration of the

Dante [52] annotation process into the Web Site Design Method (WSDM) [13] is

graphically illustrated by Figure 2.3 [51].

As we can see in Figure 2.3 the transformation to an accessible design, takes place at the

“Execute mapping + Transform pages” step, where a mapping between WSDM and

Dante ontologies applies. The WSDM key models where transformation takes place are

the WSDM site structure model and the WSDM presentation model, both outputs of the

WSDM Implementation Design phase.

that is annotated with concepts from the Dante’s WAfA24 ontology, a relationship

between the concepts in the WSDM ontology and the WAfA ontology is established. By

using these mapping rules,

Figure 2.4: Part of the WSDM site structure model for the University home page example

Now, applying this proposal for developing the page example of Section 2.2.1, Figure

2.4 shows part of the WSDM site structure model. As we can see in Figure 2.4, we

enrich this model of the University home page with navigational aid links --i.e. the

home link and the landmark link components represented by means of the symbols “H”

and “L” respectively. From home, the landmark link component offers a list of links that

the student may choose when browsing to his/her Faculty Web site.

Figure 2.5 provides the WSDM presentation model as a page template for the

University home page example, where the navigational aid links “H” and “L” from

24 Web Authoring for Accessibility (WAfA) at http://augmented.man.ac.uk/ontologies/wafa.owl

FACULTIES
WEB SITES

UNIVERSITY
HOME PAGE

H

Faculty Site 1

Faculty Site 2

Faculty Site n

:

L

31

Figure 2.4 are graphically highlighted in grey. Having these WSDM key models, the

transformation process consists of two steps: (1) Authoring Annotation transformation

which uses the information specified in the WSDM models and the Dante’s WAfA

ontology to generate the authoring annotation and, (2) Mobility Annotation

transformation which uses the output of the previous transformation as well as the

WSDM models to extend the authoring annotation with mobility annotation to improve

Accessibility.

Figure 2.5: The WSDM presentation model for the University home page example

Following, we will explain the transformation process for the University home page

example taking into account the WSDM models of Figures 2.4 and 2.5:

(1) Authoring Annotation transformation. This process uses the mapping rules

between modeling concepts defined in the WSDM ontology and authoring concepts

from the WAfA ontology. The “list of text links” at the page example, can be

represented by the List concept (at WSDM ontology) and by the NavigationalList

concept (at the WAfA ontology), but this is not a straightforward one-to-one mapping.

So, assuming the set C as the set of all WSDM modeling concepts and the set I as the

set of all instances of these modeling concepts, Figure 2.6 shows the corresponding

mapping rule for the “list of links” to the Faculties web sites at the University page

example. To avoid confusion while applying this rule, the WSDMs concepts are

prefixed with “wsdm” and the WAfA concepts with “wafa”. The NavigationalList

WAfA concept is given in bold, followed by its meaning (in italic), an informal

explanation of the mapping rule and finally, a formal definition using first-order

predicate logic.

UNIVESITY NAME

HOME

Home Link

Landmark Link

FACULTIES WEB SITES
Skip Faculty Site1 Faculty Site 2 … Faculty Site n

List of Links

32

WSDM ONTOLOGY CONCEPT WAFA ONTOLOGY CONCEPT MAPPING RULE BETWEEN WSDM AND WAFA ONTOLIGIES

List

NavigationalList wafa:NavigationalList: A “list of links”. The annotation
can be generated for wsdm:List where all list elements
have a wsdm:Link defined upon them [35].

! i " I, # y " I: wsdm:List(i) $
(! x " I: wsdm:hasChild(i, x) $

wsdm:ListItem(x) $
wsdm:hasNavigationReference(x, y) $

wsdm:NavigationReference(y)) %
wafa:NavigationalList(i)

Figure 2.6: Mapping rule for the “list of links” at the University home page example

(2) Mobility Annotation transformation. This process re-uses the mapping rules

provided by the Dante approach [52], adjusting them to interact with the WSDM models

instead of the HTML code of the Web page. Taking the output of the previous

transformation as well as the WSDM models, we extend the NavigationalList authoring

annotation with mobility annotation to improve Accessibility. Figure 2.7 provides the

mapping rule [35] for mobility annotation transformation that applies to objects

authoring annotated as a NavigationalList. All the links in the list are text links

corresponding to the Faculties’ names for whose Web sites access are allowed to

students. As the mapping rule from Figure 2.7 shows, the NavigationalList authoring

concept must be annotated with the DecisionPoint and NavigationPoint mobility

concepts, while the TextLink authoring concept (required because all the links in the list

are text links) must be annotated with NavigationPoint and TravelMemory mobility

concepts. As a consequence, the NavigacionalList, where all the links in the list are

TextLink, must be annotated with DecisionPoint, NavigationPoint and TravelMemory

mobility concepts.

MOBILITY ANNOTATION TRANSFORMATION

NavigationalList
&

NavigationalList % DecisionPoint $ NavigationPoint
TextLink % NavigationPoint $ TravelMemory

NavigacionalList $ TextLink % DecisionPoint $ NavigationPoint $ TravelMemory
&

DecisionPoint $ NavigationPoint $ TravelMemory

Figura 2.7: Mapping rule for the NavigationalList at the University home page example

33

A DecisionPoint is a choice point where alternative paths of browsing are possible;

while a NavigationPoint provides a possible route and the user exercises some control

by choosing to follow or not to follow it; finally, a TravelMemory holds information

about where the user has been and provides means to get back there. For the particular

case of the University home page example, these mobility concepts will offer a student a

point from where it is possible to choose a Faculty name, browse to its Web site and

also get back from there to the University home page. We must to keep in mind that

authoring and mobility concepts are from WAfA ontology, so the application of the rule

for the Pleasers proposal [35], looks like shows Figure 2.8.

Figure 2.8: The Pleaser et al. [35] proposal for the University home page example

The botton-half of the rule is a direct translation of the original rule, applied to the

objects annotated as a NavigationalList where all wsdm:ListItems are text elements. The

top-half of the rule formally defines a text element [35]. For further details of this

proposal, we refer the reader to [35].

2.2.3 Rules for an Accessible Composition
The work by Centeno et al. [9] presents a set of rules that, in a Web composition

process, a design tool must follow in order to create accessible Web pages. These rules

are formalized with W3C standards like XPath25 and XQuery26 expressions, defining

conditions to be met in order to guarantee that Accessible chunks of Web pages are

safely compound into a page that also results Accessible. The authors also propose

25 W3C XML Path Language at www.w3.org/TR/xpath

26 W3C XML Query Language at www.w3.org/TR/xquery

! i " I: wsdm:String(i) '
(# x, y " C:

wsdm:ObjetcChunkReference(i) $ toProperty(i, x) $ rang(x,y) $ wsdm:String(y))
% Text(i)

! i " I: wafa:NavigationalList(i) $
(! x " I, # y " I:

wsdm:hasChild(i,x) $ wsdm:ListItem(x) $ wsdm:hasChild(x,y) $ Text(y))
% wafa:DecisionPoint $ wafa:NavigationPoint $ wafa:TravelMemory

34

using the “Web-Composition Service Linking System” (WSLS) [20] as Accessibility

enabled authoring tool that makes this task feasible, and focus on how this tool

incorporates Accessibility into the process of generating new Web contents. The XPath

and XQuery expressions spot HTML nodes and attributes having Accessibility

problems. This work proposes to properly manage these spot elements by an authoring

tool, so that the author’s attention can be directly brought to these barriers in a semi-

automated edition process.

Figure 2.9: The Centeno et al. [9] proposal for the University home page example

The WSLS approach follows the AOSD separation of concerns principle to decompose

complexity and control Accessibility over six distinguished categories: Data,

Presentation, Navigation, User, Interaction, Process and Communication. The six

PROCESS-AWARE WCAG CHECKPOINTS
FOR AN ACCESSIBLE WEB PAGE COMPOSITION

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 …”
3. <html … >
:
8. <body>
:
10. <h2>Links to the Faculties WebSites</h2>
11. <div class="adjacentLinks">
12. [Skip the Navigation Bar]
13. [Faculty Site 1]
14. [Faculty Site 2]
15. [Faculty Site 3]
16. [Faculty Site 4]
17. </div>
18. </body>
19. </html>

ACCESSIBLE HTML FOR THE UNIVERSITY HOME WEB PAGE EXAMPLE

Skip the Navigation Bar

Faculty Site 1

Faculty Site 4

SET OF RULES
FOR

HTML LINKS
COMPOSITION

ACCESSIBLE LINKS IN HTML MARKUP 1

3

2

35

elements are mediated by a service control function. Beyond the advantage of the reuse

aspect of these components, separation of concerns facilitates also being compliant to

the underlying guidelines [9].

Figure 2.9 resumes graphically the proposal at Centeno et al. [9] applied to the page

example of Section 2.2.1. As highlighted in Figure 2.9 (1), given $S1 to $S5

compoundable pieces of HTML markup (also called HTML snippets), each one

represents an accessible link to a Faculty of the student’s University. The composition

of these accessible chunks of Web pages, must follow some rules in order to create an

accessible “list of links” at the University home page. The proposal provides a set of

rules that are focused on formalizing the conditions to be met so that accessible HTML

snippets can be safely compound into a page that also results accessible from the

WCAG point of view. As shown in Figure 2.9 (2), from the set of rules provided by the

proposal, we select for the page example only those rules for HTML links composition.

For example, rule 10.5 establishes “provided that all $S1’s and $S2’s links have non-

consecutive links (some printable text between links), their composition could have

consecutive links without such printable characters if a $S2’s link appears just in front

of $S1’s link” [9]. This condition for rule 10.5 (“non-consecutive links”) is formalized

with a combination of XPath and XPointer as depicted in Figure 2.10 Since this

formalization is somewhat difficult for those unfamiliar with XPath and XPointer, the

next row of Figure 2.10 summarizes its meaning in simpler terms to facilitate its

reading; remember that "a" represents an HTML a element that is used to define links.

$S2//a = () or
(pos($S1,$position)/preceding::a = () or
string-length(normalize-space((end-point(pos($S1,$position)/preceding::a[last()])
/range-to(pos($S1,$position)))/text())) > 0 or
string-length(normalize-space((start-point($S2)/range-to($S2//a[1]))/text())) > 0)
and
((pos($S1,$position)/following::a = () or
string-length(normalize-space((end-point(pos($S1,$position))/range-to(pos($S1,$position)
/following::a[1]))/text())) > 0 or
string-length(normalize-space((end-point($S2//a[last()])/range-to(end-point($S2)))/text())) > 0))

$S2//a = (' (printable characters before first $S2’s link $ printable characters after last $S2’s
links)

Figure 2.10: XPath + XPointer pre-conditions for avoiding consecutive links without printable

non-linkable characters between them [9]

36

Meanwhile, rule 13.1 establishes “there should be no links sharing both a text and a title

but pointing to different targets; provided $S1 and $S2 have no such ambiguous links

there exist a functional dependency such that for every pair of (link’s contents, link’s

title) only a single target may be found in both $S1 and $S2. In that case, we should also

make sure that no link in $S1 is similarly described in $S2 (and pointing to a different

target), or vice-versa; if so, an ambiguity would be introduced in the composed result”

[9]. This condition for rule 13.1 (“clear links”) is formalized with XPath as depicted in

Figure 2.11.

(every $a1 in $S1//a satisfies $S2//a[text() = $a1/text() and @title = $a1/@title and
@href != $a1/@href] = ()) and
(every $a2 in $S2//a satisfies $S1//a[text() = $a2/text() and @title = $a2/@title and
@href != $a2/@href] = ())

Figure 2.11: XPath pre-condition for avoiding ambiguous links [9]

Returning to Figure 2.9, given $S1 to $S5 HTML snippets corresponding to Faculty

links and rules 10.5 and 13.1, a process-aware WCAG checkpoints takes place for Web

page composition to deliver an accessible “list of links” at page example. As we can see

in Figure 2.9 (3), the “list of links” conform rules 10.5 and 13.1 responding respectively

to the statements “non consecutive links” --i.e. printable characters between links where

included, and “clear links” --i.e. title’s, target’s and content’s links are properly

specified, to avoid students get confuse while browsing his/her University home page

example. For further details of this proposal, refer to [9].

2.2.4 Adaptation to tackle Crosscutting Concerns

Casteleyn et al. [6], focus on how to extend an application with new functionality

without having to redesign the entire application. The work states that since creating a

Web application has become an increasingly complex task, various design issues like

device-dependence, privacy, security, Accessibility, localization, personalization, etc.

have become extremely relevant to the application performance. To add new

functionality, the authors propose to separate additional design concerns and describe

them independently. By using a component-based implementation, they show how to

extend a Web application to support additional design concerns at the presentation

37

generation level. Furthermore, they demonstrate how an aspect-oriented approach can

support the high-level specification of these (additional) design concerns at a conceptual

level.

Figure 2.12: Hera-S architecture [8]

The work firstly illustrates how to add adaptation to an existing Hera-based Web

application [23], using a component-based implementation. To do so, they apply the

Generic Adaptation Components (GAC) approach [16] provided by the AMACONT27

project. Niederhausen et al. introduce further work over this foundation [32] that

proposes an aspect-oriented view on adaptation engineering within the AMACONT

framework. By separating the specification of adaptation from the underlying

application in the form of so-called adaptation aspects, this work proposes to add new or

modify existing adaptation concerns on demand. The authors also present an extension

of their graphical authoring tool AMACONTBuilder [15]. This extension allows Web

engineers to intuitively incorporate adaptation aspects into Web applications. Casteleyn

et al. latest implementation [7] [8] proposes a Semantic-based Aspect-oriented

adaptation approach materialized in the form of a domain specific language, which the

authors called Semantic-based Aspect-oriented Adaptation Language (SEAL)28. It is

presented in the context of a Web Information System (WIS) design method, Hera-S,

which combines the popular open source Resource Description Framework (RDF)29

27 System Architecture for Multimedia Adaptive WebCONTent at http://www-mmt.inf.tu-

dresden.de/Forschung/Projekte/AMACONT/index_en.xhtml

28 SEAL BNF specification at http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf

29 W3C RDF/XML syntax specification at http://www.w3.org/TR/REC-rdf-syntax/

38

called Sesame [5] and the rich modeling capabilities of Hera [23], a model-driven

approach for engineering Web applications based on semantically structure data. They

choose Hera-S because: (i) it naturally builds on Semantic Web data and, (ii) it was

conceived with adaptation in mind. An illustrative overview of Hera-S architecture is

shown in Figure 2.12 from [8]. Basically, the architecture receives data from the actual

source, which conforms to the Domain Model (DM). The Application Model (AM) is

instantiated according to the context data provided by the Context Model (CM),

resulting in so-called Application Model Pages (AMPs). The authors devised their own

custom-made aspect language SEAL to provide adaptation support in the context of

Hera-S. By using SEAL’s syntax, which is based on BNF notation, they show their

adaptation engineering perspective applying pointcuts and advices expressions.

Figure 2.13: The Hera-S AM for the University home page example

:UniversityUnit a ams:NavigationalUnit ;
ams:hasInput [a ams:Variable ;
ams:varName “U”;
ams:varType uncdb:University] ;

ams:hasAttribute [
rdfs:label “UniversityName” ;
ams:hasQuery
“SELECT N1 FROM {$U} rdf:type {uncdb:University};
rdfs:label {N1}”] ;

ams:hasSetRelationship [
rdfs:label “Faculties” ;
ams:refersTo :FacultyUnit ;
ams:hasQuery
“SELECT F FROM {$U} rdf:type {uncdb:University};
uncdb:unversityFaculty {F}”
].

:FacultyUnit a ams:NavigationalUnit ;
ams:hasInput [a ams:Variable ;
ams:varName “F”;
ams:varType uncdb:Faculty] ;

ams:hasAttribute [
rdfs:label “FacultyName” ;
ams:hasQuery
“SELECT FN FROM {$F} rdf:type {uncdb:Faculty};
rdfs:label {FN}”
].

39

To demonstrate the practicality of their proposal, they apply and integrate SEAL in the

HydraGen engine30 (an implementation generation tool for Hera-S developed externally

by the University of Eindhoven).

Now, applying this proposal for developing our University home page example of

Section 2.2.1, a Hera-S Application Model (AM) using Turtle RDF notation31 would

include the statements shown in Figure 2.13.

An Hera-S Application Model (AM) is specified by means of navigational units

(denoted by ams:NavigationalUnit and called shorthand: units). A unit can be used to

represent a page and it is a primitive that (hierarchically) groups elements (called

attributes) that will together be shown to the user. The type of a unit (denoted by

ams:varType) refers to a domain data and the specification of this type is done by using

the namespace-prefix from the Hera-S Domain Model (DM). Our Hera-S AM example

bellow, consists of two units, UniversityUnit and FacultyUnit, which are of the type

uncdb:University and uncdb:Faculty respectively (in this case this namespace-prefix

from our Hera-S DM stands for “Universidad Nacional de Córdoba Data Base”). Both

units are navigational units of Hera-S AM, each one representing a particularly

grouping of information. For example, the UniversityUnit contains one attribute

(denoted by ams:hasAttribute) representing the university’s name and a set of

navigational relationships (denoted by ams:hasSetRelationship) from UniversityUnit to

FacultyUnit. Note that the ams:SetRelationship “refersTo” the FacultyUnit, which

specifies what exactly to show for every faculty. Since a unit will mostly correspond to

(a) specific domain concept(s), one or several content elements are needed in order to

instantiate the unit. For example, in the UniversityUnit the output of the SeRQL queries

(denoted by ams:hasQuery) provides a university name and a number of members

which will be used respectively to instantiate the UniversityName and the Faculties of

the UniversityUnit.

Now, by using the domain specific language SEAL it is possible to apply the Casteleyn

et al. proposal [8], to provide aspect-oriented adaptation support in the context of Hera-

30 Hydragen: An implementation of Hera-S at http://wwwis.win.tue.nl/~ksluijs/material/Singh-Master-

Thesis-2007.pdf

31 W3C-Turtle at http://www.w3.org/TeamSubmission/turtle/

40

S for the University home page example of Section 2.2.1. As Figure 2.14 shows, we

have instantiated the adaptation requirement to stand for the Accessibility requirements

of adjacent links. The adaptation aspect is composed of a pointcut and an advice; while

pointcut expressions select exactly those elements from the Application Model (AM)

where adaptation concerns need to be applied. Advices specify exactly what needs to be

done to the element(s) selected in the pointcut [8]. Back to our example of Section

2.2.1, the pointcut in Figure 2.14 selects sets of relationships --i.e. consecutive links,

which originate from a(ny) University unit and target a(ny) Faculty unit. The advice is

conditioned to users using a “screen-reader” device. As we explained above, in Hera-S

the user’s context is captured by the Context Model (CM) and with Hera-S notational

conventions, referencing this user’s context is done using a “cm:” -prefix.

Adaptation REQUIREMENT: for users using a screen-reader avoid consecutive links
and clearly identify the target of each one of them.

Adaptation ASPECT:

POINTCUT: type SetRelationship and from uncdb:University and to uncdb:Faculty

ADVICE: if (cm:userDevice.type = “screen-reader”) {

ADD attribute containing hasLabel “Faculty Name”, hasQuery “SELECT FN FROM
{$F} rdf:type {uncdb:Faculty}; rdfs:label {FN}”;

ADD rdf:plainLiteral “[” and “]” surrounding;

};

Figure 2.14: Aspect-oriented adaptation using SEAL for Accessibility requirements of the

University home page example

Firstly, the advice adds an AM attribute to the relationships selected in the pointcut

showing the faculty name with the label “Faculty Name” and the corresponding query,

if the user’s device is a “screen-reader”. Secondly, the advice also uses plain RDF(s)32

to add square brackets surrounding the relationships selected in the pointcut.

Although, this approach is primarily focused on adapting an existing Web application,

we include it because the approach proposes to add relevant design concerns, like

32 W3C-RDF:PlainLiteral: A data type for RDF Plain Literals at http://www.w3.org/TR/rdf-plain-

literal/#Syntax_for_rdf:PlainLiteral_Literals

41

Accessibility, in an aspect-oriented manner and, it is representative of other similar

works in the adaptation field, like [1] [37]. For further details of this proposal, we refer

the reader to [6] [7] [8].

2.2.5 User Needs through Personas

By using existing ‘‘best practices of software engineering’’ for Accessibility purposes,

the approach by Zimmermann & Vanderheiden [53] presents a methodology for

accessible design and testing to capture functional requirements. The approach defines

a new way to use proven tools of software engineering, like use cases, scenarios, test

cases, guidelines and checkpoints, for Accessibility purposes; and to relate them to each

other, thus facilitating automation as much as possible. The resultant methodology or

process model for accessible design and testing consist of: (i) capturing Accessibility

requirements in a way that makes them tangible and comprehensible, through use cases

and the technique of user profiling “personas” [53], (ii) making Accessibility

requirements concrete through scenarios and guidelines for accessible design, (iii)

manual and automatic testing based on test cases and Accessibility checkpoints that are

derived from guidelines, and (iv) complementary user testing and expert reviews, thus

evaluating intermediate and end results, and continuously improving the overall process

model.

Figure 2.15: Components of the integrated approach and their relationships [53]

42

In this way for design projects that are employing a use case driven methodology, this

approach allows to incorporate accessible design into the existing processes rather than

having to add Accessibility as a new process [53]. Figure 2.15 from [53] shows how

basic design tools as use cases, scenarios and test cases are linked to personas,

guidelines and checkpoints respectively for Accessibility purpose.

Figure 2.16 shows the process model for accessible design and testing by Zimmermann

& Vanderheiden [53] applied to our University home page example of Section 2.2.1 and

using WCAG 1.0 Accessibility guidelines.

Figure 2.16: The Zimmermann & Vanderheiden [53] proposal for the University home page

example

Figure 2.16 shows a situation where a test case is failing because an Accessibility

requirement for adjacent links is not met. In this case, the proposed model makes it

possible to pinpoint to a particular checkpoint that is causing the failure (10.5

checkpoint), and trace it back to a particular guideline that is violated (guideline 10

from WCAG 1.0). This allows identifying a particular persona (a blind Student) who

derived in

USE CASE
“Choosing the Student’s Faculty at the

University home page”

SCENARIO
A blind Student using a
screen-reader device…

TEST
CASE

illustrated by

PERSONA

A blind Student who is
able to use a screen-

reader device…

WCAG 1.0 ACCESSIBILITY
GUIDELINES

WCAG 1.0 CHECKPOINTS

has actors

conforms
to?

checks

derived in

linked to

10.5

FAILS

PINPOINTS

DETECTS
VIOLATION

IDENTIFIES
IMPACT

43

despite being able to use a screen-reader will not be able to access the application

because of the Accessibility barrier identified by the test case failure. The model

presented here is not only useful for fixing the Accessibility problems, but also provides

a context to the developers for understanding the consequences of failure [53]. For

further details of this proposal, we refer the reader to [53].

2.2.6 Model-Driven Development with AWA

Accessibility for Web Applications (AWA) [29] [30] offers a domain specific

methodological framework for the development of accessible Web applications. The

AWA framework provides: (i) a specific Accessibility process (which can be adopted

by other processes), indicating activities, artifacts and their sequence in the different

phases of integrating Accessibility criteria, and (ii) the support for modeling and using

techniques provided by Web Engineering (WE) methods as well as Model-Driven

Development (MDD), the focus of this work.

Figure 2.17: AWA for MDA development process [29]

As shown in Figure 2.17, the strategy in AWA consists of providing a Computational

Independent Model (CIM), called domain specific AWA-Metamodel, which can be

used to build Platform Independent Models (PIMs) and Platform Specific Models

(PSMs) for accessible applications within WE methods. The authors provide an AWA-

44

toCode resource and the strategy is based on a transformation Model-to-Text (M2T) to

generate code from PSMs. In this work, they also announced that they have developed a

CASE support for metamodeling, using the Ecore plugin from the Eclipse Modeling

Framework (EMF)33 [29].

Figure 2.18: The Moreno et al. [29] proposal for the University home page

Figure 2.18 shows AWA for Model Driven Architecture (MDA)34 applied to the

Hyperlink concept required by our University home page example of Section 2.2.1.

Here several constructors have been defined in the MetaObject Facility (MOF)35 to

support the abstraction of Web Accessibility concepts. The diagram develops the

concept of hyperlink that includes required attributes to enable the hyperlink to meet the

33 EMF overview at http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.emf.doc/references

34 OMG-MDA overview at http://www.omg.org/mda/

35 OMG-MOF specification at http://www.omg.org/mof/

MOF CLASS

<<instance of>>

META-METAMODEL MOF METHOD CLASS

 HYPERLINK AWA CLASS

href
accesskey
title
context
target
render adjacent links distinctly
…

PAGE METHOD
CLASS

<<instance of>>

METAMODEL (CIM)

<<instance of>> <<instance of>>

MODEL (PIM)

<<instance of>> PSM

Model-to-text

13.1
10.5

< … >

[Faculty Site 1]

< … >

45

WCAG standard, such as the title attribute. This attribute contributes to satisfy the 13.1

checkpoint of WCAG 1.0 that establishes “Clearly identify the target of each link”. To

continue with the example of Section 2.2.1, Moreno et al. [29] do not consider the 10.5

checkpoint of WCAG 1.0 as a property for the link/hyperlink concept. Although, notice

that as we have done at the hyperlink AWA class in Figure 2.10, it is possible to include

the “render adjacent links distinctly” attribute, to enable meeting this Accessibility

requirement, if the presence of adjacent links makes it necessary.

A graphic element representing a hyperlink (MOF meta-object) has been defined in the

AWA-Editor, and may be included in the PIM models, which contain knowledge

provided by the AWA-Metamodel necessary for the Web code generation in the final

phase [29]. For further details of this proposal, we refer the reader to [29] [30].

In this Chapter we presented Accessibility in the context of some WE approaches. We

reviewed and applied in a case study five different proposals [35] [9] [6] [53] [30] that

consider this quality factor in the development process of Web applications.

After introducing background (Chapter 3) and our proposal (Chapter 4), we will apply it

(Chapter 5) and we will come back to the approaches summarized here to compare them

to our proposal (Chapter 6).

46

23

2. ACCESSIBILITY WITHIN WE APPROACHES

2.1 Web Accessibility

Generally speaking, in the World Wide Web (WWW), where users have the freedom to

choose what best meets their expectations, the quality of a user interface (UI) can make

the difference between maintaining the Web site competitiveness (or not) within its

domain --e.g. e-Business and B2B10, e-Education (e-Teaching and e-Learning), e-

Government, GIS11 (GeoWeb, Web Mapping and Web GIS), etc., and even compromise

the Web site survival.

In May 2006 foreword by Molly Holzschlag said [41]:

“…Berners-Lee’s vision has always had to do with the human side of the Web. After

all, it’s not machines that use the Web, but people… Accessibility is not about

disabilities; rather, it’s about people getting to shared information that the vision of

the Web has made manifest…”

Web Accessibility is dedicated to achieving the access to the Web by everyone,

regardless of their permanent or temporary disabilities, age-related problems,

generational gaps, personal skills and preferences, culture and developed education, etc.

While it is true that Web Accessibility emerged initially to help accessing the Web to

people with disabilities, currently there is no doubt about the spectrum of benefits that

Accessibility provides to the universe of Web users. In this thesis, we have chosen not

to provide several definitions of Web Accessibility, as is usually done to describe its

10 Business to Business (B2B) also known as e-Biz, is the exchange of products, services, or information

between businesses rather than between businesses and consumers.

11 A Geographic Information Systems (GIS) is a system of hardware and software used for storage,

retrieval, mapping, and analysis of geographic data. GeoWeb consists of location-aware Web

technologies usually manifested on the WWW; Web Mapping then refers to those online applications that

permit users to view or create maps on a Web platform, usually with limited or no GIS analysis; while

Web GIS then refers to GIS that use Web technologies as a method of communication between the

elements of a GIS.

24

scope and contributions (these definitions are all available at the Internet12). Instead, we

prefer to introduce Table 2.1 that clearly shows how Accessibility can help all users to

face accessing the Web at different life situations; after all, we all have different skills

and abilities.

Table 2.1: Web Accessibility benefits the entire universe of Web Users

Disability People with Disability People “without Disability”

Vision Blinds Users who are driving in the
dark…

Low vision Low-vision Users Users who are using a device
with a small display...

Hearing Deafs Users who are in forced silence
(library) or using music players
with headphones…

Low hearing Low-hearing Users Users who are in noisy
environments…

Motor impaired Motor impaired Users due to
illness or traumatic injuries
(permanent or temporary)

Users who are wearing tight
clothes, protective clothing,
overalls, workware…
Users on a moving and/or
unstable vehicle --e.g. a train...

Cognitive
impaired

Users who are limited in their
abilities to process and
memorize information, to take
decisions, to learn, to
performe intellectual tasks.

Users who are tired, fatigued,
distracted, worried, sleepy,
drunk...

Communicational
impaired

Users having difficulties to
understand linguistic and
textual.

Users who have no knowledge of
the language, slogans or
symbols...

The Word Wide Web Consortium (W3C) is one of the main referents of Web

Accessibility and has worked for more than ten years in the development of a standard

called Web Content Accessibility Guidelines (WCAG13), which is considered a

benchmark for most of the laws on Information Technology and Communication

worldwide. The WCAG has two documents, the WCAG 1.0 [45] and the WCAG 2.0

12 W3C (2005) definition at http://www.w3.org/WAI/intro/accessibility.php; ISO/TS 16071 (2003)

definition at http://www.iso.org/iso/catalogue_detail.htm?csnumber=30858; Hull (2004) definition at

http://ausweb.scu.edu.au/aw05/papers/refereed/arora/paper.html; Fourney and Carter (2006) definition at

http://userlab.usask.ca/papers/IEA06DF-JC.pdf; etc.

13 WCAG overview at http://www.w3.org/WAI/intro/wcag

25

[46], whose stable specifications were released in 1999 and 2008 respectively. Since

their longstanding presence in the Accessibility arena, the WCAG 1.0 has provided the

basis for the promulgation of other Accessibility standards and legislation in several

countries. For example, this is the case for the US Section 508 [38], the UK PAS 78

[34] and the Italian Legislation on Accessibility [40]. Currently, the migration process

from WCAG 1.0 to WCAG 2.0 of these standards and legislation is taking place. In

Argentina, Web Accessibility is an issue that has been recently included in the State's

agenda. The legislation 26.653 called “Guía de Accesibilidad para Sitios Web del Sector

Público Nacional14”, which adheres to WCAG 1.0 document, was approved by

Resolution 69/2011 on June 27th 2011. In August 2011, Argentina became a member of

the W3C15. We will return on WCAG and its documents in Section 4.6, and then also in

Section 7.3.1 where we will explain how we carry out the migration of our proposal.

Since 1999, when the first W3C Accessibility document was released, a number of tools

and approaches have emerged and are available to support Web developers evaluating

Accessibility of existing Web applications. However, Accessibility has not yet gained

enough recognition as a crucial non-functional requirement such as other quality factors.

This situation may be due to several reasons, but probably, it had much to do with the

way Accessibility was first introduced to Web developers --i.e. by showing only its side

committed with disability. This lack of knowledge within developer’s community,

prevented them from getting involved with the cause, and as a consequence, the work

has been addressed mostly by Accessibility specialists and entities engaged with

disability. As we shall see next in Section 2.2, the status is worse from a design

perspective, since it is a fact that there are not many efforts considering Accessibility at

early stages of the development process.

At this point, we would like to perform some considerations concerning to the

relationship between Accessibility and Web development stages. As we already said in

Chapter 1, Web Engineering (WE) focuses on stages, which create and exploit domain

models, to face the development life cycle of Web applications. Almost every mature

14 Access to Public Information by Law 26.653 at

http://www.infoleg.gov.ar/infolegInternet/anexos/175000-179999/175694/norma.htm

15 Argentina became a member of the W3C at http://www.puntogov.com/nota.asp?nrc=2641

26

WE method proposes the following five stages, each one delivering its respective

model: requirements, conceptual, navigation, user interface and implementation. In the

best cases, Accessibility is submitted to user interface (UI) codification and

implementation stage. In most cases, Accessibility is addressed when the application is

already fully developed, and in consequence the process of making this application

accessible involves significant redesign and recoding, which may be considered outside

the project’s scope and budget [22].

Finally, when we talk about Web Accessibility, we must specify the target of the

Accessibility efforts since to establish the client-server Web relationship, several

components are required. This means that Web Accessibility depends on these

components working together and improvements in specific components could

substantially improve Web Accessibility. Thus, for example, we can evaluate the

Accessibility of the following components: (i) User agents, client devices or assistive

technologies, such as PCs and notebooks, cell phones, iPods and iPads, screen readers16,

screen magnifiers17, braille keyboards18, PDAs, etc., (ii) Web browsers, such as Safari,

Mozilla Firefox, Internet Explorer, Opera, etc., (iii) Authoring tools –i.e. software that

helps creating Web sites19, (iv) Web pages --i.e. the content, structure, presentation and

layout of Web documents and (v) Web navigation --i.e. how the Web user moves from

one Web page to another when traveling through the cyberspace. The W3C-WAI

provides valuable standards to improve the Accessibility of these components20 that are

16 Software for the visually impaired users that reads the contents of a computer screen, converting the

text to speech.

17 A screen magnifier is software that interfaces with a computer's graphical output to present enlarged

screen content.

18 Portable units used to take notes using the Braille system; quite often use chording techniques (key

combinations), but some units are designed with a traditional keyboard.

19 A list of some Authoring tools and their comparison at

http://www.edb.utexas.edu/minliu/multimedia/Compare%20Web%20Authoring%20Tools.pdf

20 W3C-WAI guidelines and techniques at http://www.w3.org/WAI/guid-tech.html

27

called “Essential Components of Web Accessibility”21. As examples of these standards,

we already mentioned the WCAG documents [45] [46], which are focused on

explaining how to make accessible the Web content component and, the User Agents

Accessibility Guidelines (UAAG) [48] document22, which provides guidelines for

designing user agents that lower barriers to Web accessibility for people with

disabilities. As we are especially interested in developing accessible Web applications,

our work focuses its efforts on designing user interfaces (UI) by applying the WCAG

recommendations to propitiate better access to content, help navigation and improve the

user experience while interacting with the application.

2.2 Proposals for Developing Accessible Web Applications

This section reviews the most relevant proposals that aim to consider the Accessibility

concern in at least, some of the stages of the development life-cycle. To provide a more

complete description and also to perform a more thorough analysis of these proposals,

in Section 2.2.1 we introduce a case study that we use to apply each one of them.

Figure 2.1: A simplified University home page example

21 W3C-WAI: strategies, guidelines, resources to make the Web accessible to people with disabilities at

http://www.w3.org/WAI/intro/components.php

22 UAAG overview and UAAG 2.0 working draft at http://www.w3.org/WAI/intro/uaag.php

28

2.2.1 Providing a Student of his/her Faculty Site

In this section we present the typical situation faced by a college student when looking

for his/her respective Faculty site. Let us assume that the student enters the home page

of the University of which depends the desired Faculty and this home page has the

appearance illustrated in Figure 2.1.

As we can see in Figure 2.1 the page offers the student a set of related links to the

Faculties that make up the University. The name of each Faculty is an anchor the

student can use to browse to his/her Faculty site. Since links are navigation mechanisms

that create a set of paths a user may take through a site, it is very important to keep a

consistent style of presentation for links, as for every interface of components relevant

to the interaction interface-functionality. Thus, taking into account Accessibility

recommendations for links will allow users to locate and skip navigation mechanisms

more easily to find important content. This helps people with learning and reading

disabilities but also makes navigation easier for all users. Predictability will increase the

likelihood that people will find information at your site, or avoid it when they so desire

[45]. Returning to the University home, Figure 2.2 illustrates the corresponding HTML

code for this page example.

Figure 2.2: The HTML code for the University home page example

As we can see at lines 12, 13, 14, 15 and 16 of Figure 2.2, a set of five HTML a

elements is defined for a “skip” option and four Faculties, and they are enclosed with an

HTML div element at lines 11 and 17 of the styling class “adjacentLinks”. Following,

we use this simple example to discuss the way the five approaches cited at this chapter

work for improving more accessible user interface designs.

29

Figure 2.3: The WSDM with Dante from [51]

2.2.2 Automatic Annotations for Accessibility

The main goal in Plessers et al. [35] is to generate annotations for visually impaired

users automatically from explicit conceptual knowledge existing during the design

process. The approach integrates the Dante [52] annotation process into the Web Site

Design Method (WSDM) [13] that allows Web sites and Web applications to be

developed in a systematic way. The annotations are generated from explicit conceptual

knowledge captured during the design process by means of WSDM’s modeling

concepts. These WSDM’s modeling concepts, used in the different phases, are

described using the WSDM OWL23 ontology. To generate code the authors establish a

transformation process that takes the conceptual design models as input and generates a

set of annotations as a consequence. The transformation process consists of two

annotation steps: authoring and mobility, which resemble the original annotation

23 OWL Web Ontology Language at http://www.w3.org/TR/owl-ref/

30

process of the Dante approach. The difference is that the authoring annotation in Dante

is manual and based on the HTML source code of the Web site. The integration of the

Dante [52] annotation process into the Web Site Design Method (WSDM) [13] is

graphically illustrated by Figure 2.3 [51].

As we can see in Figure 2.3 the transformation to an accessible design, takes place at the

“Execute mapping + Transform pages” step, where a mapping between WSDM and

Dante ontologies applies. The WSDM key models where transformation takes place are

the WSDM site structure model and the WSDM presentation model, both outputs of the

WSDM Implementation Design phase.

that is annotated with concepts from the Dante’s WAfA24 ontology, a relationship

between the concepts in the WSDM ontology and the WAfA ontology is established. By

using these mapping rules,

Figure 2.4: Part of the WSDM site structure model for the University home page example

Now, applying this proposal for developing the page example of Section 2.2.1, Figure

2.4 shows part of the WSDM site structure model. As we can see in Figure 2.4, we

enrich this model of the University home page with navigational aid links --i.e. the

home link and the landmark link components represented by means of the symbols “H”

and “L” respectively. From home, the landmark link component offers a list of links that

the student may choose when browsing to his/her Faculty Web site.

Figure 2.5 provides the WSDM presentation model as a page template for the

University home page example, where the navigational aid links “H” and “L” from

24 Web Authoring for Accessibility (WAfA) at http://augmented.man.ac.uk/ontologies/wafa.owl

FACULTIES
WEB SITES

UNIVERSITY
HOME PAGE

H

Faculty Site 1

Faculty Site 2

Faculty Site n

:

L

31

Figure 2.4 are graphically highlighted in grey. Having these WSDM key models, the

transformation process consists of two steps: (1) Authoring Annotation transformation

which uses the information specified in the WSDM models and the Dante’s WAfA

ontology to generate the authoring annotation and, (2) Mobility Annotation

transformation which uses the output of the previous transformation as well as the

WSDM models to extend the authoring annotation with mobility annotation to improve

Accessibility.

Figure 2.5: The WSDM presentation model for the University home page example

Following, we will explain the transformation process for the University home page

example taking into account the WSDM models of Figures 2.4 and 2.5:

(1) Authoring Annotation transformation. This process uses the mapping rules

between modeling concepts defined in the WSDM ontology and authoring concepts

from the WAfA ontology. The “list of text links” at the page example, can be

represented by the List concept (at WSDM ontology) and by the NavigationalList

concept (at the WAfA ontology), but this is not a straightforward one-to-one mapping.

So, assuming the set C as the set of all WSDM modeling concepts and the set I as the

set of all instances of these modeling concepts, Figure 2.6 shows the corresponding

mapping rule for the “list of links” to the Faculties web sites at the University page

example. To avoid confusion while applying this rule, the WSDMs concepts are

prefixed with “wsdm” and the WAfA concepts with “wafa”. The NavigationalList

WAfA concept is given in bold, followed by its meaning (in italic), an informal

explanation of the mapping rule and finally, a formal definition using first-order

predicate logic.

UNIVESITY NAME

HOME

Home Link

Landmark Link

FACULTIES WEB SITES
Skip Faculty Site1 Faculty Site 2 … Faculty Site n

List of Links

32

WSDM ONTOLOGY CONCEPT WAFA ONTOLOGY CONCEPT MAPPING RULE BETWEEN WSDM AND WAFA ONTOLIGIES

List

NavigationalList wafa:NavigationalList: A “list of links”. The annotation
can be generated for wsdm:List where all list elements
have a wsdm:Link defined upon them [35].

! i " I, # y " I: wsdm:List(i) $
(! x " I: wsdm:hasChild(i, x) $

wsdm:ListItem(x) $
wsdm:hasNavigationReference(x, y) $

wsdm:NavigationReference(y)) %
wafa:NavigationalList(i)

Figure 2.6: Mapping rule for the “list of links” at the University home page example

(2) Mobility Annotation transformation. This process re-uses the mapping rules

provided by the Dante approach [52], adjusting them to interact with the WSDM models

instead of the HTML code of the Web page. Taking the output of the previous

transformation as well as the WSDM models, we extend the NavigationalList authoring

annotation with mobility annotation to improve Accessibility. Figure 2.7 provides the

mapping rule [35] for mobility annotation transformation that applies to objects

authoring annotated as a NavigationalList. All the links in the list are text links

corresponding to the Faculties’ names for whose Web sites access are allowed to

students. As the mapping rule from Figure 2.7 shows, the NavigationalList authoring

concept must be annotated with the DecisionPoint and NavigationPoint mobility

concepts, while the TextLink authoring concept (required because all the links in the list

are text links) must be annotated with NavigationPoint and TravelMemory mobility

concepts. As a consequence, the NavigacionalList, where all the links in the list are

TextLink, must be annotated with DecisionPoint, NavigationPoint and TravelMemory

mobility concepts.

MOBILITY ANNOTATION TRANSFORMATION

NavigationalList
&

NavigationalList % DecisionPoint $ NavigationPoint
TextLink % NavigationPoint $ TravelMemory

NavigacionalList $ TextLink % DecisionPoint $ NavigationPoint $ TravelMemory
&

DecisionPoint $ NavigationPoint $ TravelMemory

Figura 2.7: Mapping rule for the NavigationalList at the University home page example

33

A DecisionPoint is a choice point where alternative paths of browsing are possible;

while a NavigationPoint provides a possible route and the user exercises some control

by choosing to follow or not to follow it; finally, a TravelMemory holds information

about where the user has been and provides means to get back there. For the particular

case of the University home page example, these mobility concepts will offer a student a

point from where it is possible to choose a Faculty name, browse to its Web site and

also get back from there to the University home page. We must to keep in mind that

authoring and mobility concepts are from WAfA ontology, so the application of the rule

for the Pleasers proposal [35], looks like shows Figure 2.8.

Figure 2.8: The Pleaser et al. [35] proposal for the University home page example

The botton-half of the rule is a direct translation of the original rule, applied to the

objects annotated as a NavigationalList where all wsdm:ListItems are text elements. The

top-half of the rule formally defines a text element [35]. For further details of this

proposal, we refer the reader to [35].

2.2.3 Rules for an Accessible Composition
The work by Centeno et al. [9] presents a set of rules that, in a Web composition

process, a design tool must follow in order to create accessible Web pages. These rules

are formalized with W3C standards like XPath25 and XQuery26 expressions, defining

conditions to be met in order to guarantee that Accessible chunks of Web pages are

safely compound into a page that also results Accessible. The authors also propose

25 W3C XML Path Language at www.w3.org/TR/xpath

26 W3C XML Query Language at www.w3.org/TR/xquery

! i " I: wsdm:String(i) '
(# x, y " C:

wsdm:ObjetcChunkReference(i) $ toProperty(i, x) $ rang(x,y) $ wsdm:String(y))
% Text(i)

! i " I: wafa:NavigationalList(i) $
(! x " I, # y " I:

wsdm:hasChild(i,x) $ wsdm:ListItem(x) $ wsdm:hasChild(x,y) $ Text(y))
% wafa:DecisionPoint $ wafa:NavigationPoint $ wafa:TravelMemory

34

using the “Web-Composition Service Linking System” (WSLS) [20] as Accessibility

enabled authoring tool that makes this task feasible, and focus on how this tool

incorporates Accessibility into the process of generating new Web contents. The XPath

and XQuery expressions spot HTML nodes and attributes having Accessibility

problems. This work proposes to properly manage these spot elements by an authoring

tool, so that the author’s attention can be directly brought to these barriers in a semi-

automated edition process.

Figure 2.9: The Centeno et al. [9] proposal for the University home page example

The WSLS approach follows the AOSD separation of concerns principle to decompose

complexity and control Accessibility over six distinguished categories: Data,

Presentation, Navigation, User, Interaction, Process and Communication. The six

PROCESS-AWARE WCAG CHECKPOINTS
FOR AN ACCESSIBLE WEB PAGE COMPOSITION

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 …”
3. <html … >
:
8. <body>
:
10. <h2>Links to the Faculties WebSites</h2>
11. <div class="adjacentLinks">
12. [Skip the Navigation Bar]
13. [Faculty Site 1]
14. [Faculty Site 2]
15. [Faculty Site 3]
16. [Faculty Site 4]
17. </div>
18. </body>
19. </html>

ACCESSIBLE HTML FOR THE UNIVERSITY HOME WEB PAGE EXAMPLE

Skip the Navigation Bar

Faculty Site 1

Faculty Site 4

SET OF RULES
FOR

HTML LINKS
COMPOSITION

ACCESSIBLE LINKS IN HTML MARKUP 1

3

2

35

elements are mediated by a service control function. Beyond the advantage of the reuse

aspect of these components, separation of concerns facilitates also being compliant to

the underlying guidelines [9].

Figure 2.9 resumes graphically the proposal at Centeno et al. [9] applied to the page

example of Section 2.2.1. As highlighted in Figure 2.9 (1), given $S1 to $S5

compoundable pieces of HTML markup (also called HTML snippets), each one

represents an accessible link to a Faculty of the student’s University. The composition

of these accessible chunks of Web pages, must follow some rules in order to create an

accessible “list of links” at the University home page. The proposal provides a set of

rules that are focused on formalizing the conditions to be met so that accessible HTML

snippets can be safely compound into a page that also results accessible from the

WCAG point of view. As shown in Figure 2.9 (2), from the set of rules provided by the

proposal, we select for the page example only those rules for HTML links composition.

For example, rule 10.5 establishes “provided that all $S1’s and $S2’s links have non-

consecutive links (some printable text between links), their composition could have

consecutive links without such printable characters if a $S2’s link appears just in front

of $S1’s link” [9]. This condition for rule 10.5 (“non-consecutive links”) is formalized

with a combination of XPath and XPointer as depicted in Figure 2.10 Since this

formalization is somewhat difficult for those unfamiliar with XPath and XPointer, the

next row of Figure 2.10 summarizes its meaning in simpler terms to facilitate its

reading; remember that "a" represents an HTML a element that is used to define links.

$S2//a = () or
(pos($S1,$position)/preceding::a = () or
string-length(normalize-space((end-point(pos($S1,$position)/preceding::a[last()])
/range-to(pos($S1,$position)))/text())) > 0 or
string-length(normalize-space((start-point($S2)/range-to($S2//a[1]))/text())) > 0)
and
((pos($S1,$position)/following::a = () or
string-length(normalize-space((end-point(pos($S1,$position))/range-to(pos($S1,$position)
/following::a[1]))/text())) > 0 or
string-length(normalize-space((end-point($S2//a[last()])/range-to(end-point($S2)))/text())) > 0))

$S2//a = (' (printable characters before first $S2’s link $ printable characters after last $S2’s
links)

Figure 2.10: XPath + XPointer pre-conditions for avoiding consecutive links without printable

non-linkable characters between them [9]

36

Meanwhile, rule 13.1 establishes “there should be no links sharing both a text and a title

but pointing to different targets; provided $S1 and $S2 have no such ambiguous links

there exist a functional dependency such that for every pair of (link’s contents, link’s

title) only a single target may be found in both $S1 and $S2. In that case, we should also

make sure that no link in $S1 is similarly described in $S2 (and pointing to a different

target), or vice-versa; if so, an ambiguity would be introduced in the composed result”

[9]. This condition for rule 13.1 (“clear links”) is formalized with XPath as depicted in

Figure 2.11.

(every $a1 in $S1//a satisfies $S2//a[text() = $a1/text() and @title = $a1/@title and
@href != $a1/@href] = ()) and
(every $a2 in $S2//a satisfies $S1//a[text() = $a2/text() and @title = $a2/@title and
@href != $a2/@href] = ())

Figure 2.11: XPath pre-condition for avoiding ambiguous links [9]

Returning to Figure 2.9, given $S1 to $S5 HTML snippets corresponding to Faculty

links and rules 10.5 and 13.1, a process-aware WCAG checkpoints takes place for Web

page composition to deliver an accessible “list of links” at page example. As we can see

in Figure 2.9 (3), the “list of links” conform rules 10.5 and 13.1 responding respectively

to the statements “non consecutive links” --i.e. printable characters between links where

included, and “clear links” --i.e. title’s, target’s and content’s links are properly

specified, to avoid students get confuse while browsing his/her University home page

example. For further details of this proposal, refer to [9].

2.2.4 Adaptation to tackle Crosscutting Concerns

Casteleyn et al. [6], focus on how to extend an application with new functionality

without having to redesign the entire application. The work states that since creating a

Web application has become an increasingly complex task, various design issues like

device-dependence, privacy, security, Accessibility, localization, personalization, etc.

have become extremely relevant to the application performance. To add new

functionality, the authors propose to separate additional design concerns and describe

them independently. By using a component-based implementation, they show how to

extend a Web application to support additional design concerns at the presentation

37

generation level. Furthermore, they demonstrate how an aspect-oriented approach can

support the high-level specification of these (additional) design concerns at a conceptual

level.

Figure 2.12: Hera-S architecture [8]

The work firstly illustrates how to add adaptation to an existing Hera-based Web

application [23], using a component-based implementation. To do so, they apply the

Generic Adaptation Components (GAC) approach [16] provided by the AMACONT27

project. Niederhausen et al. introduce further work over this foundation [32] that

proposes an aspect-oriented view on adaptation engineering within the AMACONT

framework. By separating the specification of adaptation from the underlying

application in the form of so-called adaptation aspects, this work proposes to add new or

modify existing adaptation concerns on demand. The authors also present an extension

of their graphical authoring tool AMACONTBuilder [15]. This extension allows Web

engineers to intuitively incorporate adaptation aspects into Web applications. Casteleyn

et al. latest implementation [7] [8] proposes a Semantic-based Aspect-oriented

adaptation approach materialized in the form of a domain specific language, which the

authors called Semantic-based Aspect-oriented Adaptation Language (SEAL)28. It is

presented in the context of a Web Information System (WIS) design method, Hera-S,

which combines the popular open source Resource Description Framework (RDF)29

27 System Architecture for Multimedia Adaptive WebCONTent at http://www-mmt.inf.tu-

dresden.de/Forschung/Projekte/AMACONT/index_en.xhtml

28 SEAL BNF specification at http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf

29 W3C RDF/XML syntax specification at http://www.w3.org/TR/REC-rdf-syntax/

38

called Sesame [5] and the rich modeling capabilities of Hera [23], a model-driven

approach for engineering Web applications based on semantically structure data. They

choose Hera-S because: (i) it naturally builds on Semantic Web data and, (ii) it was

conceived with adaptation in mind. An illustrative overview of Hera-S architecture is

shown in Figure 2.12 from [8]. Basically, the architecture receives data from the actual

source, which conforms to the Domain Model (DM). The Application Model (AM) is

instantiated according to the context data provided by the Context Model (CM),

resulting in so-called Application Model Pages (AMPs). The authors devised their own

custom-made aspect language SEAL to provide adaptation support in the context of

Hera-S. By using SEAL’s syntax, which is based on BNF notation, they show their

adaptation engineering perspective applying pointcuts and advices expressions.

Figure 2.13: The Hera-S AM for the University home page example

:UniversityUnit a ams:NavigationalUnit ;
ams:hasInput [a ams:Variable ;
ams:varName “U”;
ams:varType uncdb:University] ;

ams:hasAttribute [
rdfs:label “UniversityName” ;
ams:hasQuery
“SELECT N1 FROM {$U} rdf:type {uncdb:University};
rdfs:label {N1}”] ;

ams:hasSetRelationship [
rdfs:label “Faculties” ;
ams:refersTo :FacultyUnit ;
ams:hasQuery
“SELECT F FROM {$U} rdf:type {uncdb:University};
uncdb:unversityFaculty {F}”
].

:FacultyUnit a ams:NavigationalUnit ;
ams:hasInput [a ams:Variable ;
ams:varName “F”;
ams:varType uncdb:Faculty] ;

ams:hasAttribute [
rdfs:label “FacultyName” ;
ams:hasQuery
“SELECT FN FROM {$F} rdf:type {uncdb:Faculty};
rdfs:label {FN}”
].

39

To demonstrate the practicality of their proposal, they apply and integrate SEAL in the

HydraGen engine30 (an implementation generation tool for Hera-S developed externally

by the University of Eindhoven).

Now, applying this proposal for developing our University home page example of

Section 2.2.1, a Hera-S Application Model (AM) using Turtle RDF notation31 would

include the statements shown in Figure 2.13.

An Hera-S Application Model (AM) is specified by means of navigational units

(denoted by ams:NavigationalUnit and called shorthand: units). A unit can be used to

represent a page and it is a primitive that (hierarchically) groups elements (called

attributes) that will together be shown to the user. The type of a unit (denoted by

ams:varType) refers to a domain data and the specification of this type is done by using

the namespace-prefix from the Hera-S Domain Model (DM). Our Hera-S AM example

bellow, consists of two units, UniversityUnit and FacultyUnit, which are of the type

uncdb:University and uncdb:Faculty respectively (in this case this namespace-prefix

from our Hera-S DM stands for “Universidad Nacional de Córdoba Data Base”). Both

units are navigational units of Hera-S AM, each one representing a particularly

grouping of information. For example, the UniversityUnit contains one attribute

(denoted by ams:hasAttribute) representing the university’s name and a set of

navigational relationships (denoted by ams:hasSetRelationship) from UniversityUnit to

FacultyUnit. Note that the ams:SetRelationship “refersTo” the FacultyUnit, which

specifies what exactly to show for every faculty. Since a unit will mostly correspond to

(a) specific domain concept(s), one or several content elements are needed in order to

instantiate the unit. For example, in the UniversityUnit the output of the SeRQL queries

(denoted by ams:hasQuery) provides a university name and a number of members

which will be used respectively to instantiate the UniversityName and the Faculties of

the UniversityUnit.

Now, by using the domain specific language SEAL it is possible to apply the Casteleyn

et al. proposal [8], to provide aspect-oriented adaptation support in the context of Hera-

30 Hydragen: An implementation of Hera-S at http://wwwis.win.tue.nl/~ksluijs/material/Singh-Master-

Thesis-2007.pdf

31 W3C-Turtle at http://www.w3.org/TeamSubmission/turtle/

40

S for the University home page example of Section 2.2.1. As Figure 2.14 shows, we

have instantiated the adaptation requirement to stand for the Accessibility requirements

of adjacent links. The adaptation aspect is composed of a pointcut and an advice; while

pointcut expressions select exactly those elements from the Application Model (AM)

where adaptation concerns need to be applied. Advices specify exactly what needs to be

done to the element(s) selected in the pointcut [8]. Back to our example of Section

2.2.1, the pointcut in Figure 2.14 selects sets of relationships --i.e. consecutive links,

which originate from a(ny) University unit and target a(ny) Faculty unit. The advice is

conditioned to users using a “screen-reader” device. As we explained above, in Hera-S

the user’s context is captured by the Context Model (CM) and with Hera-S notational

conventions, referencing this user’s context is done using a “cm:” -prefix.

Adaptation REQUIREMENT: for users using a screen-reader avoid consecutive links
and clearly identify the target of each one of them.

Adaptation ASPECT:

POINTCUT: type SetRelationship and from uncdb:University and to uncdb:Faculty

ADVICE: if (cm:userDevice.type = “screen-reader”) {

ADD attribute containing hasLabel “Faculty Name”, hasQuery “SELECT FN FROM
{$F} rdf:type {uncdb:Faculty}; rdfs:label {FN}”;

ADD rdf:plainLiteral “[” and “]” surrounding;

};

Figure 2.14: Aspect-oriented adaptation using SEAL for Accessibility requirements of the

University home page example

Firstly, the advice adds an AM attribute to the relationships selected in the pointcut

showing the faculty name with the label “Faculty Name” and the corresponding query,

if the user’s device is a “screen-reader”. Secondly, the advice also uses plain RDF(s)32

to add square brackets surrounding the relationships selected in the pointcut.

Although, this approach is primarily focused on adapting an existing Web application,

we include it because the approach proposes to add relevant design concerns, like

32 W3C-RDF:PlainLiteral: A data type for RDF Plain Literals at http://www.w3.org/TR/rdf-plain-

literal/#Syntax_for_rdf:PlainLiteral_Literals

41

Accessibility, in an aspect-oriented manner and, it is representative of other similar

works in the adaptation field, like [1] [37]. For further details of this proposal, we refer

the reader to [6] [7] [8].

2.2.5 User Needs through Personas

By using existing ‘‘best practices of software engineering’’ for Accessibility purposes,

the approach by Zimmermann & Vanderheiden [53] presents a methodology for

accessible design and testing to capture functional requirements. The approach defines

a new way to use proven tools of software engineering, like use cases, scenarios, test

cases, guidelines and checkpoints, for Accessibility purposes; and to relate them to each

other, thus facilitating automation as much as possible. The resultant methodology or

process model for accessible design and testing consist of: (i) capturing Accessibility

requirements in a way that makes them tangible and comprehensible, through use cases

and the technique of user profiling “personas” [53], (ii) making Accessibility

requirements concrete through scenarios and guidelines for accessible design, (iii)

manual and automatic testing based on test cases and Accessibility checkpoints that are

derived from guidelines, and (iv) complementary user testing and expert reviews, thus

evaluating intermediate and end results, and continuously improving the overall process

model.

Figure 2.15: Components of the integrated approach and their relationships [53]

42

In this way for design projects that are employing a use case driven methodology, this

approach allows to incorporate accessible design into the existing processes rather than

having to add Accessibility as a new process [53]. Figure 2.15 from [53] shows how

basic design tools as use cases, scenarios and test cases are linked to personas,

guidelines and checkpoints respectively for Accessibility purpose.

Figure 2.16 shows the process model for accessible design and testing by Zimmermann

& Vanderheiden [53] applied to our University home page example of Section 2.2.1 and

using WCAG 1.0 Accessibility guidelines.

Figure 2.16: The Zimmermann & Vanderheiden [53] proposal for the University home page

example

Figure 2.16 shows a situation where a test case is failing because an Accessibility

requirement for adjacent links is not met. In this case, the proposed model makes it

possible to pinpoint to a particular checkpoint that is causing the failure (10.5

checkpoint), and trace it back to a particular guideline that is violated (guideline 10

from WCAG 1.0). This allows identifying a particular persona (a blind Student) who

derived in

USE CASE
“Choosing the Student’s Faculty at the

University home page”

SCENARIO
A blind Student using a
screen-reader device…

TEST
CASE

illustrated by

PERSONA

A blind Student who is
able to use a screen-

reader device…

WCAG 1.0 ACCESSIBILITY
GUIDELINES

WCAG 1.0 CHECKPOINTS

has actors

conforms
to?

checks

derived in

linked to

10.5

FAILS

PINPOINTS

DETECTS
VIOLATION

IDENTIFIES
IMPACT

43

despite being able to use a screen-reader will not be able to access the application

because of the Accessibility barrier identified by the test case failure. The model

presented here is not only useful for fixing the Accessibility problems, but also provides

a context to the developers for understanding the consequences of failure [53]. For

further details of this proposal, we refer the reader to [53].

2.2.6 Model-Driven Development with AWA

Accessibility for Web Applications (AWA) [29] [30] offers a domain specific

methodological framework for the development of accessible Web applications. The

AWA framework provides: (i) a specific Accessibility process (which can be adopted

by other processes), indicating activities, artifacts and their sequence in the different

phases of integrating Accessibility criteria, and (ii) the support for modeling and using

techniques provided by Web Engineering (WE) methods as well as Model-Driven

Development (MDD), the focus of this work.

Figure 2.17: AWA for MDA development process [29]

As shown in Figure 2.17, the strategy in AWA consists of providing a Computational

Independent Model (CIM), called domain specific AWA-Metamodel, which can be

used to build Platform Independent Models (PIMs) and Platform Specific Models

(PSMs) for accessible applications within WE methods. The authors provide an AWA-

44

toCode resource and the strategy is based on a transformation Model-to-Text (M2T) to

generate code from PSMs. In this work, they also announced that they have developed a

CASE support for metamodeling, using the Ecore plugin from the Eclipse Modeling

Framework (EMF)33 [29].

Figure 2.18: The Moreno et al. [29] proposal for the University home page

Figure 2.18 shows AWA for Model Driven Architecture (MDA)34 applied to the

Hyperlink concept required by our University home page example of Section 2.2.1.

Here several constructors have been defined in the MetaObject Facility (MOF)35 to

support the abstraction of Web Accessibility concepts. The diagram develops the

concept of hyperlink that includes required attributes to enable the hyperlink to meet the

33 EMF overview at http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.emf.doc/references

34 OMG-MDA overview at http://www.omg.org/mda/

35 OMG-MOF specification at http://www.omg.org/mof/

MOF CLASS

<<instance of>>

META-METAMODEL MOF METHOD CLASS

 HYPERLINK AWA CLASS

href
accesskey
title
context
target
render adjacent links distinctly
…

PAGE METHOD
CLASS

<<instance of>>

METAMODEL (CIM)

<<instance of>> <<instance of>>

MODEL (PIM)

<<instance of>> PSM

Model-to-text

13.1
10.5

< … >

[Faculty Site 1]

< … >

45

WCAG standard, such as the title attribute. This attribute contributes to satisfy the 13.1

checkpoint of WCAG 1.0 that establishes “Clearly identify the target of each link”. To

continue with the example of Section 2.2.1, Moreno et al. [29] do not consider the 10.5

checkpoint of WCAG 1.0 as a property for the link/hyperlink concept. Although, notice

that as we have done at the hyperlink AWA class in Figure 2.10, it is possible to include

the “render adjacent links distinctly” attribute, to enable meeting this Accessibility

requirement, if the presence of adjacent links makes it necessary.

A graphic element representing a hyperlink (MOF meta-object) has been defined in the

AWA-Editor, and may be included in the PIM models, which contain knowledge

provided by the AWA-Metamodel necessary for the Web code generation in the final

phase [29]. For further details of this proposal, we refer the reader to [29] [30].

In this Chapter we presented Accessibility in the context of some WE approaches. We

reviewed and applied in a case study five different proposals [35] [9] [6] [53] [30] that

consider this quality factor in the development process of Web applications.

After introducing background (Chapter 3) and our proposal (Chapter 4), we will apply it

(Chapter 5) and we will come back to the approaches summarized here to compare them

to our proposal (Chapter 6).

46

47

3. BACKGROUND OF OUR PROPOSAL

3.1 Introducing the Basis

In the following Sections we introduce four key topics that we will use throughout the

rest of the work, to make it self-contained. These are: (i) Aspect-Oriented Composition,

(ii) Reference Frameworks and Ontologies, (iii) User Interaction Diagrams (UIDs), and

(iv) Softgoal Interdependency Graphs (SIGs). Our aim is not to discuss these issues in

detail; instead we intend to stress the most important concepts. We also devote a special

section to the motivation for using the WCAG 1.0 [45] instead of WCAG 2.0 [46].

3.2 Aspect-Oriented Composition

A concern is an area of interest or focus in a system. Since Dijkstra [13], concerns are

the primary criteria for decomposing software into smaller, more manageable and

comprehensible parts that have meaning to a software engineer. Examples of concerns

include requirements, use cases, features, data structures, quality-of-service issues,

variants, intellectual property boundaries, collaborations, patterns and contracts. Thus,

Separation Of Concerns (SOC), is a long standing idea that refers to the ability of

identifying, encapsulating and manipulating parts of software that are crucial to a

particular purpose [13]. Software engineering development methods have been created

with this principle in mind. However, traditional paradigms to software development,

such as Object-Oriented methods and languages, are not able to modularize crosscutting

concerns effectively, because they suffer from a limitation called the “Tyranny of the

Dominant Decomposition”. This limitation means that they allow modularization in

only one way at a time, so they are unable to solve the many kinds of concerns that do

no align with that main modularization. In other words, given one out of many possible

decompositions of the problem (most of them are core functionality concerns), some

sub-problems show, such as non-functional and functional requirements, added after

facts, etc., which cannot be modularized. These problems are concerns that cut across

many other concerns producing “crosscutting symptoms” resulting into representations -

-e.g. specifications, classes, code, etc., which are difficult to understand and maintain.

48

An important issue to underline about this kind of behavior is not only manifested for:

(i) a given decomposition, but for all possible decompositions, (ii) a given paradigm,

such as object-orientation, also in other paradigms and, (iii) at the implementation stage,

also in other stages, such as analysis and design. Usually, these crosscutting symptoms

manifest in “scattering” and “tangling” problems. We say that the representation of a

concern is scattered over an artifact, when the code for the implementation of the

concern’s body is spread out over multiple and different modules or classes rather than

localized. While the representation of a concern is tangled within an artifact, when the

code for the implementation of the concern’s body is intermixed with code that

implements other concerns’ bodies. Scattering and tangling often go together, even

though they are very different concepts [17].

Typical examples of such crosscutting concerns are non-functional requirements, such

as security, availability, persistency, usability and Accessibility, the main topic of this

paper. However, crosscutting concerns can also be functional requirements, such as

order auditing, validation, and in the Web engineering domain, tracing the user

navigation history [21].

SOC can be supported in many ways, such as by process, by notation, by organization,

by language mechanism and, so on. Within the broad theme of SOC, Aspect-Oriented

Software Development (AOSD) is distinguished by providing new insight on the

separation of crosscutting concerns and in particular leads to the idea that single

hierarchical structures are too limiting to effectively separate all concerns in complex

systems36. AOSD aims at handling such crosscutting concerns at the various levels of

the process of software development, by providing means to their systematic

identification, modularization and composition [17]. Crosscutting concerns are

encapsulated in separate modules, known as “aspects”, and composition mechanisms

are later used to weave them back with other core modules, at loading time, compilation

time, or run-time. Since aspects are concerns that crosscut a primary or dominant

decomposition (other core modules), aspect “weaving” is a composition mechanism that

injects aspects into this primary or dominant decomposition.

However, aspects, as well as their compositions, also have an important role to play

36 AOSD community at http://www.aosd.net/wiki/index.php?title=Main_Page

49

before the implementation. On one hand, the notion of “early aspects” means it is

important to consider aspects early on in the software engineering lifecycle during

analysis and design, as opposed to only at the implementation and testing stages. At

these early stages of the development process, aspects will allow the modularization of

crosscutting concerns that cannot be encapsulated by a single use case, for example, and

are typically spread across several of them. Composition, on the other hand, allows the

developers to picture the whole system and to identify conflicting situations whenever a

concern contributes negatively to others [17].

Traditionally, AOSD has focused mainly on the implementation phase of the software

lifecycle since aspects are identified and captured mainly at coding. But aspects have

been also applied to former phases as design and even earlier as requirements to cover

consistently the entire development process [2] [28].

Figure 3.1: Aspects modularization [4]

3.2.1 Aspectual Implementation: Advices and Pointcuts

Aspect-orientation proposes a fundamentally new kind of modularization that goes

beyond generalized procedures: an aspect. An aspect is a module that can localize the

implementation of a crosscutting concern. The aspectual decomposition modularizes

scattering problems --i.e. one concern in many modules, and tangling problems --i.e.

one module, many concerns. Thus, the key to this modularization technique lies in its

module composition mechanism. Figure 3.1 shows graphically the idea supporting

aspects using an example at the implementation level. While subroutines explicitly

Aspects

15

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Aspect

Implicit invocation

Crosscutting Concerns

7

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Concern Implementation

A Object 1
B Object 2
C Object 3
D Object 4
E Object 1,2,3

Typical examples: synchronisation, error handling, timing
constraints, user-interface, ...
Also concerns of a specific application, e.g.: login functionality in
webshop, business rules, ...

50

invoke the behaviors implemented by other subroutines, aspects have an implicit

invocation mechanism [4]. This mechanism that injects aspects into the primary or

dominant decomposition is called “aspect weaving”. The implicit invocation mechanism

requires that the aspect itself specifies “where or when” it needs to be invoked and also

“what” needs to be injected.

Figure 3.2: Aspects implementation [4]

Consequently, as Figure 3.2 shows, an aspect implementation consists of two

conceptually different parts: the aspect functionality code --i.e. aspect functional

implementation, and the aspect applicability code –i.e. aspect control over implicit

invocation. The aspect functionality code is not essentially different from regular code

and is executed when the aspect is invoked. This invocation of the aspect is determined

by the aspect applicability code. This code contains statements that specify where or

when the aspect needs to be invoked. In standard AOSD terminology, this aspect

applicability code is referred to as a “pointcut” expression, which must match a join

point, and the aspect functionality code is referred to as the aspect “advice” code. Since

a single aspect can consist of multiple different functionalities that need to be invoked

from various different places in the code, an aspect implementation can consist of

several pointcuts and advice code segments.

 Where / When ?

 What ?

Joinpoints

27

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Aspect

joinpoint: !

A join point is a point
of interest in some
artefact in the software
lifecycle through which
two or more concerns
may be composed.

Examples in implementation artefact:

- message sends

- method executions

- error throwing

- variable assignments

- ...

51

3.3 Reference Frameworks and Ontologies

Our approach involves two main elements when designing the user interface towards

achieving Accessibility of Web applications. Firstly, a reference framework can serve

us as a conceptual structure for making design decisions when building useful user

interface models for Accessibility purpose. Secondly, ontologies can provide us with a

formal specification for the abstract interface vocabulary. In the following sections, we

introduce these two main elements.

3.3.1 Design Decisions within a User Interface Framework

There are many decisions that developers must make during the design of a user

interface. As with any complex decision-making process, it is useful to partition the set

of decisions into classes and concentrate on the decision in each class, separately. A

design decision framework consists of a collection of design decision classes. When

decisions in each of the design decision classes are combined, an overall design is

synthesized [27]. The criteria for identifying and constructing decision classes are

separation, completeness, sufficiency, understandability, independence, reusability and

soundness.

We applied in our work the Larson’s user interface design decision framework [27] that

defines the following five classes:

! Structural decision class, which specifies the structure of the end users’ conceptual

model. These specifications include a description of the conceptual objects that are

consumed, produced, and/or accessed by the end users and application functions.

! Functional decision class, which specifies functions (operations), which the user can

apply to the conceptual objects. Functional decisions determine what requests the

users can express and what results the application functions can present to the user.

! Dialog decision class, which specifies the content and sequence of information

exchange between the user and the application. In this class, the designer specifies

the dialog style taking into account: (i) what the units of information exchanged

between the user and the application are, (ii) how these units of information are

structured into messages exchanged between the user and the application and, (iii)

52

what the appropriate sequences of message exchanged are. These units of

information, which have a formally defined meaning, are called “semantic tokens”.

! Presentation decision class, where the designer chooses interaction objects that

make up the end users’ interface. Informally, interaction objects are visible widgets

on a screen that the user can manipulate to enter lexical tokens and which the user

views to obtain lexical tokens. A “lexical token” is a keystroke, mouse movement,

or mouse click entered by the user or a character, icon, or elementary sound

presented to the user.

! Pragmatic decision class, which deals with issues of gesture, space, and hardware

devices. Often these decisions are determine by designers in conjunction with

ergonomic specialist.

Since the last three classes are related to the user interaction and activities with the

application’s interface, and they are also directly involved with Web Accessibility, we

ensure their inclusion in our approach. As an example, consider decisions involving

Accessibility requirements in the case of playing a song’s track at a music Web site. The

Dialog decision class must describe a sequence of commands for turn-on / turn-off the

song’s track. While in the Presentation decision class, the designer chooses the

appropriate vocabulary and widgets for individualizing these two commands clearly to

the user. Finally, in the Pragmatic decision class, the designer chooses the hardware,

such as a mouse or a touchscreen, for selecting these commands.

Larson's framework [27] gives us a comprehensive and general view that can be

instantiated with different conceptual models, such as the approach proposed eleven

years later by Baxley in [3]. This proposal describes a universal model of a user

interface that can be applied to any interactive medium or product based on the

established model of structure-behavior-presentation.

Table 3.1 shows how this early proposal, can be easily mapped to design decision

classes introduced by the Larson’s framework to add additional levels of granularity or

specificity. For example, Larson’s presentation class (corresponding to Baxley’s

presentation tire) can be specified in depth at layout, style and Baxley’s text layers. This

can be useful if the design for the user interface under development requires the explicit

identification of these components at the presentation model.

53

Table 3.1: Mapping between Larson’s framework [27] and Baxley’s model [3]

Baxley’s Universal Model of User Interface Larson’s User Interface Design Decision Framework
Tires Layers Classes
Structure Conceptual Model Structural & Functional

Task Flow
Organization Model

Behaviour Viewing & Navigational Dialog
Editing & Manipulation
User Assistance

Presentation Layout Presentation
Style
Text

3.3.2 An Ontology to share Abstract Interface Vocabulary

Any hypermedia Web application exchange information through its user interface with

its environment in order to fulfill a task. The most abstract level is called abstract user

interface and focuses on the various types of functionality that can be played by

interface widgets with respect to the information exchange between the user and the

application.

We applied the Abstract Widget Ontology [36], which provides an abstract interface

vocabulary to represent the various types of functionality that can be played by interface

widgets with respect to the activity carried out, or the information exchanged between

the user and the application. This ontology can be thought of as a set of classes whose

instances will comprise a given interface.

As shown in Figure 3.3, an abstract interface widget can be any of the following [36]:

! SimpleActivator widget, which represents elements capable of reacting to external

events, such as mouse clicks on links or action buttons.

! ElementExhibitor widget, which represent elements able to exhibit some type of

content, such as text or images.

! VariableCapture widget, which represent elements able to receive/capture, the value

of one or more variables. As we can see in Figure 3.3, the VariableCapture widget

generalizes two distinct (sub) concepts. The first one is the ontology (sub) concept

PredefinedVariable, which represents elements that allow the selection of a subset

from a set of predefined values, such as buttons and check boxes; often this

selection must be a singleton. The second ontology (sub) concept is the

54

IndefiniteVariable, which represents elements that allow the user to enter data

(previous unknown values) through the keyboard, such as text typed by the user in a

text box on a form.

! CompositeInterfaceElement widget, which is a composition of any of the abstract

interface widget represented by the ontology’s previous concepts.

Figure 3.3: Abstract Widget Ontology [36]

It becomes evident from this ontology the essential roles that interface elements play

with respect to the interaction --i.e. they exhibit information, or they react to external

events, or they accept information. Composite elements allow us to build more complex

interfaces out of simpler building blocks [36]. Once the abstract interface model has

been defined, each widget is mapped onto a concrete widget to specify the concrete

interface model. An abstract interface widget provides a type of functionality to the user

by using an interface element, while a concrete interface widget is the actual

implementation of that interface element in a given mark-up language or a runtime

environment.

Since HTML is the “lingua franca” --i.e. a means of communication between people of

different languages for publishing hypertext on the World Wide Web, in Sections 5.3.2

and 5.4 we map these ontology concepts onto HTML elements; this mapping is

presented when we describe our model for user interface concerns.

3.4 User Interaction Diagrams

A User Interaction Diagram (UID) [44] is a diagrammatic modeling technique focusing

exclusively on the information exchange between the application and the user. UIDs are

IndefiniteVariable

ContinuosGroup DiscreteGroup SingleChoices MultipleChoices

VariableCapture ElementExhibitor SimpleActivator

PredefinedVariable

AbstractInterfaceElement

CompositeInterfaceElement

55

an outstanding tool to support the communication between different stakeholders during

requirements specification and are particularly valuable considering the interactive

nature of Web applications. UIDs can be used to enrich the use case models but they are

also key graphical tools for linking requirements at later stages of a WE development

process to obtain conceptual, navigational and user interface diagrams [43].

Figure 3.4: A simple UID: Enrolling a Student in an Examination Board given a Course

UIDs are simple state machines, and at the same time an effective instrument to convey

the evolution of a Web application process and to support traceability from

requirements to later design steps, smoothing the way to implementation. In Figure 3.4

we show a simple UID to express the use case “Enrolling a Student in an Examination

Board given a Course” in the context of the SIU Guarani registration system.

To ease the comprehension of Figure 3.4, we include here some remarks about the

UID’s notation. The ellipse represents an interaction between the user and the system

and is assigned a number representing its order in the interaction sequence. An ellipse

< 1 >

[courseSelected]

[examinationOptionSelected]

Identified
Student

… InitialOptions(optionTitle)
Student X

Student X

< 3 >

[1]

[1]

< 4 >

… Courses(courseTitle)

Registration Completed !!!

[1]

[careerSelected]

 … Career(careerTitle)

Student X

< 2 >

 UID < Student’s Login >

Career X

print Registration()

56

with an arrow without a source particularly recognizes the initial interaction; the results

of each subsequence interaction, which cause processing in the system, should be

represented as a separate ellipse, connected to the preceding interaction by an arrow.

Each ellipse offers content to the user that depends on the interaction sequence of the

task represented by the UID. For example, an ellipse can provide the user with any of

the following widgets: (i) a data entry i.e-- data entered by the user and graphically

represented by a rectangle; (ii) text i.e--descriptive text represented by “XXXX”; (iii) a

structure with their data items or a set of structures with their data items i.e--selectable

elements represented by “element(data items)” or by “...element(data items)”

respectively. A more formal description of the original UID’s notation can be found in

[43] [44].

In the first interaction of Figure 3.4 (indicated by <1> and an incoming arrow), a student

already identified at the SIU Guarani system by a previous UID corresponding to the

use case “Login a Student given the Student’s ID and Password”, selects only the

examination option (represented by “[1]”) from an initial set of options (represented by

“...”). At interaction <2>, the response of the system is the set of careers in which a

student is enrolled. Notice that this set always has at least two elements and this is

because even if the student is enrolled in only one career, the SIU Guarani system offers

examination enrolling for admission’s courses or career’s courses. The student chooses

one of them and the system returns at interaction <3> a complete set of courses (related

to the selected career) in which the student is able to enroll. The student selects a course

and the system returns at interaction <4> the registration to an examination board for the

course. Additionally, the user can perform the operation “print Registration” (indicated

by a line with a black bullet) to get a receipt of the registration completed. The complete

syntax for UIDs can be found in [44].

3.5 Softgoal Interdependency Graphs

Softgoal Interdependency Graphs (SIGs) have been intensively used in software

engineering for modeling non-functional requirements [11] [12]. For example, a

framework for integrating non-functional requirements (NFRs) with functional ones in

the use case model is proposed in [12]. In this framework, NFRs are represented as

57

“softgoals” to be “satisfied”. To determine satisficeability, design alternatives or

decisions (called operationalizing softgoals) are considered; design tradeoffs are

analyzed, design rationale is recorded and design choices are made. The entire process

is recorded in a “Softgoal Interdependency Graph” (SIG) and then the selected design

decisions (operationalizing softgoals) can be used as a framework for architecture and

design [12].

Figure 3.5: Softgoal Interdependency Graph (SIG) for Student Friendliness NFR

In Figure 3.5 we partially depict a SIG for the Student Friendliness softgoal in the

context of the SIU Guaraní registration system. The light cloud indicates an NFR

softgoal, denoted with nomenclature Type[Topic] where Type is a non-functional aspect

--e.g. Student Friendliness, and Topic is the context for the softgoal --e.g. a Student

accessing the SIU Guaraní registration system. Either Type or Topic of each NFR

softgoals can be refined, one at a time, with either AND-decomposition (denoted with a

single arc) or OR-decomposition (denoted with a double arc). For example, as shown in

Figure 3.5, Student Friendliness[Student - SIU Guaraní system] is OR-decomposed into

Student Friendliness[Manifest Model] and Student Friendliness[Technical Model]. The

manifest model is the UI model through which the software represents its functioning to

the user and it is built around task, people and business objects; while the technical

model is the model with which developers feel most comfortable and it is built around

objects, method, algorithms and data structures [26].

[Technical Model]

UI Support Student Support

++
- -

Student Friendliness [Student - SIU Guaraní System]

[Manifest Model]

 !
!

Ad-hoc Development

Process

Information Gathering about
Students

Accurate
Response

Accurate
On-line Help

++

- -

++

++

 ++

++

! !

X

"

Custom Keypad
++

"

58

Since student friendliness is the NFR under evaluation, the focus is on the Manifest

Model token that is AND-decomposed into Student Support[Manifest Model] and UI

Support [Manifest Model]. The dark cloud indicates an operationalizing softgoal. For

example, in most development environments the developers agree on a basic framework

and the UI is constructed in an ad-hoc manner when the screens are coded. This kind of

practice has a highly negative contribution since a formal UI model is never constructed

and this is the reason why in Figure 3.5, the operationalizing softgoal Ad-hoc

Development Process is denied.

3.6 Web Content Accessibility Guidelines Documents

Since the WCAG has two documents (1.0 and 2.0), it is important to make clear at this

point why we chose the 1.0 document. WCAG 1.0 has been used worldwide since 1999

as a reference material or cited as a normative from many other Accessibility documents

in the world [34] [38] [40]. Many tools and approaches also have implemented it.

Although the WCAG 2.0 has been released in December 2008 and it is a fact that so far

the rate of adoption has been relatively slow. For example, though it appears that within

UK government departments there is a growing acceptance that websites under

development should conform to WCAG 2.0, the official government policy still remains

WCAG 1.0. As another example, in Germany, despite not using the WCAG, all public

websites are beginning to use the usability regulation which incorporates WCAG 1.0

and migration of the Accessibility national guideline to WCAG 2.0 is just beginning;

meanwhile in Spain, where any rule specified by legislation refers to a national standard

based on WCAG 1.0, as far as we know, there is no regulation oriented toward WCAG

2.0 yet. Finally, since Section 508 [38] is undergoing a revision over the next couple of

years [42], we have to wait approximately until 2011-2012 for the WCAG 2.0 to be

harmonized into this Accessibility standard. At this point we emphasize that we are pre-

supporting new issues addressed by W3C-WAI, but in light of how the migration of

Accessibility regulations toward WCAG 2.0 is evolving, we think that the WCAG 2.0 is

still in its infancy and therefore some time must pass before it is widespread adopted.

As we already mention in Section 2.1, the situation in Argentina is less developed, since

Web Accessibility is an issue that has been recently included in the State's agenda. The

59

legislation 26.653 called “Guía de Accesibilidad para Sitios Web del Sector Público

Nacional37”, which adheres to WCAG 1.0 document, was approved by Resolution

69/2011 on June 27th 2011. In August 2011, Argentina became a member of the

W3C38. As argentine citizens committed with Accessibility, we have much expectation

about this first steps towards an inclusive government Web for all.

In addition to the reasons stated above, we selected the WCAG 1.0 because it is a

mature, committed to all possible Accessibility barriers and stable document version

and part of a series of valuable and related Accessibility guidelines published by the

W3C-WAI [50] with which WCAG 1.0 can be applied in conjunction. We revisit this

discussion in Section 7.3.1 where we also provide some insights on how we upgraded

our approach to WCAG 2.0 [46].

37 Access to Public Information by Law 26.653 at

http://www.infoleg.gov.ar/infolegInternet/anexos/175000-179999/175694/norma.htm

38 Argentina became a member of the W3C at http://www.puntogov.com/nota.asp?nrc=2641

60

61

4. AN APPROACH FOR ENGINEERING

ACCESSIBLE WEB APPLICATIONS

4.1 Our Approach in a Nutshell

In the spirit of modern Web Engineering approaches, we propose a model-driven

development process in which the construction of a Web application consists of the

specification of a set of conceptual models, each addressing a different concern (such as

navigation or interface). We propose an iterative and incremental process, which uses,

as input, a set of Web application’s requirements as provided by any WE approach --

e.g. a set of use cases, goals, etc.

The model we envisage to deal with Accessibility concerns within a Web engineering

approach is illustrated in Figure 4.1. Columns in Figure 4.1 indicate: (i) the overall

process with their main activities (in the middle), (ii) the conceptual tools and languages

used (on the right) along with relations to the stage of the process where they are

required, and (iii) the artifacts provided as input by the WE approach and / or delivered

as output by our process (on the left). In order to ease reading, we need to recall here

some previous explanations. In Figure 4.1, most arrows indicate an input or output,

except for the UID and SIG diagrams as shown in Figure 4.1 (2.1) and (2.2), where the

arrows are input/output. This is because there are cases in which these artifacts could be

developed once and then reused in different Web projects. For example, the

Accessibility requirements of an image or a basic data entry form can be modeled once,

and later reuse in new projects that require these interface elements. We revisit this

issue in Chapter 5 and also in Chapter 6 where we also compare related work with ours

indicating differences, advantages and drawbacks.

Firstly, we explain in general terms our approach to lead then to a detailed description

of the proposed techniques for implementing our proposal step-by-step.

62

Figure 4.1: Overview of Our Approach

As highlighted in Figure 4.1 (1), this process manages Web application requirements

looking for those that involve Accessibility needs. This is because it is at the user’s

interface level where Accessibility barriers39 finally show, so we are particularly

interested in discovering Accessibility requirements at the user interface design. Then,

39 Probably, the best-known definition of a barrier is the one given by Giorgio Brajnik at

http://users.dimi.uniud.it/~giorgio.brajnik/projects/bw/bw.htmlhttp://www.omg.org/mda/One: “A barrier

is any condition that hinders the user's progress towards achievement of a goal, when the user is a

disabled person. A barrier is described in terms of: (i) the category of user and the type of disability, (ii)

the type of assistive technology being used, (iii) the failure mode, that is the activity/task that is hindered

and how it is hindered, and (iv) which features in the page raise the barrier.”

SUPPORTING TOOL

63

as shown in Figure 4.1 (2), we propose an early capture of Accessibility concrete

concerns by developing two kinds of diagrams: the UID with Accessibility integration

points and the Softgoal Interdependency Graph (SIG) template for WCAG 1.0

Accessibility requirements, as shown in Figure 4.1 (2.1) and (2.2) respectively. We

propose these conceptual tools basically to allow the representation of Accessibility

requirements while executing a user’s task (the UID technique and the SIG model are

described above in Sections 3.4 and 3.5 respectively). As indicated in Figure 4.1 (3),

this Accessibility knowledge captured at early stages aids designers making decisions

through the abstract interface model, as shown in Figure 4.1 (3.1), and then, as shown in

Figure 4.1 (4) toward its implementation through the concrete interface model as shown

in Figure 4.1 (4.1).

Almost all WE approaches have an explicit development activity for user interface

design and, normally, a user interface is specified by the abstract interface and the

concrete interface models, providing respectively the type of functionality offered to the

user by the interface elements and the actual implementation of those elements in a

given runtime environment. So, given a user’s task, the SIG model provides the WCAG

1.0 Accessibility checkpoints that crosscut the interface widgets (both, abstract and

concrete ones, as shown in Figure 4.1 (3.1) and (4.1) respectively), to ensure an

accessible user experience.

In the following Sections, we put all the pieces together to give a detailed step-by-step

explanation of our Aspect-Oriented approach.

4.2 Identifying Application’s Requirements that Involve

Accessibility Needs

There is nothing new in saying that requirements are essential to create a model of the

most relevant functional and non-functional application’s concerns before writing one

line of code. This is why any WE approach uses an explicit development activity for

requirements gathering and specification. Most of these approaches apply some

combination of UML40 object-oriented techniques, like actors and tasks, scenarios, use

40 OMG-UML: The Unified Modeling Language at http://www.uml.org/

64

cases, etc., to capture Web application’s requirements and deliver a model for handling

complexity into parts. Since we are particularly interested in discovering Accessibility

concerns at the user interface design, we propose as a first step, an iterative and

incremental process over these Web application’s requirements looking specially those

that involve user-system interaction but also those derived from all kind of user activity

with the application’s interface. As an example, assume that we take into account the

following use case “Login a Student given the Student’s ID and Password”:

Use Case 1: Login a Student given the Student’s ID and Password
Brief Description: This use case describes how a Student logs into the SUI Guaraní registration system.
Success End Condition: The Student is now logged into the system.
Primary Actor: Student
Description

Main Success Scenario:
Step Action

1. The system requests that the Student enter his/her ID and Password.
2. The Student enters his/her ID and Password.
3. The system validates the entered ID and Password and logs the Student into the system.

Extensions:
Step Branching Action

3.a The Student enters an invalid ID and/or Password, the system displays an error message, the use case

ends.

This use case describes the application’s requirements for the online student’s login

Web page example (introduced in Section 1.1 by Figure 1.1). The functionality required

for the online login involves user-system interaction, since at Step 1 of the main success

scenario, the student is requested by the system to enter his/her ID and password. At the

registration system, Step 2 is satisfied when the student enters its identity card number

as an ID and a four-digit key as a password. Then at Step 3 the system executes the

validation process yielding the student logged into the system as a success end condition

or displaying an error message to end the use case. This identification process is defined

as Step 1 and is graphically represented by (1) in Figure 4.1.

65

4.3 Specifying Accessibility Concrete Concerns

After requirements’ identification in Step 1 and because of the reasons related to

Accessibility features and its relevance to the success of the Web, explained in Section

1.1 and Section 2.1, we propose the early capture of Accessibility concrete concerns that

involve user interactions and activities with the application’s interface. Mostly because

of the non-functional, generic and crosscutting nature of Accessibility concerns of a

user-system interaction, we developed two conceptual tools as extensions of the UID

and SIG techniques (introduced earlier in Section 3.4 and 3.5 respectively): the UID

technique with integration points and SIG templates for Accessibility.

As an example, let us return to the use case “Login a Student given the Student’s ID and

Password” in Section 4.2 and consider a scenario in which a blind student using an

older “screen reader” device wishes to log into the registration system. The picture is

easy to catch, just think about this student trying to deal with the online login Web page.

It is a fact that Accessibility concerns related to the user layout and the user technology

support must be considered to help blind student’s interaction and browsing regardless

of its assistive device. Specifically, in this case it means that the HTML elements

required for the identification form must be accessible for students using “screen

readers”. So, when developing the functional requirements captured by the use case, we

need a way to record Accessibility concerns early and as a reminder for design. With

this aim in mind we developed the UID technique with integration points and SIG

template for Accessibility.

Following, in Sections 4.3.1 and 4.3.2, we describe these conceptual tools and we show

how they work together to encourage the specification of Accessibility concrete

concerns at Step 2.

4.3.1 Using UIDs with Integration Points Technique

For each application’s requirement identified at Step 1, and at Step 2 (graphically

represented by (2) in Figure 4.1), we firstly develop an UID diagram focusing mainly on

outlining integration points where Accessibility is crucial for ensuring a successful

information exchange between the application and the user.

66

With the traditional perspective given by techniques like [11][12] in mind (depicted in

Section 3.4), we introduce the concept of UIDs’s integration points to model the

Accessibility concerns of a user-system interaction. Particularly, we define two kinds of

UIDs integration points as follows:

! User-UID Interaction (U-UI) integration point. This is an integration point for

Accessibility at UID interaction level --i.e. to propitiate an accessible

communication and information exchange between the user and a particular

interaction of a UID interaction diagram.

! User-UID Interaction’s component (U-UIc) integration point. This is an

integration point for Accessibility at UID interaction’s component level --i.e. to

propitiate an accessible communication and information exchange between the

user and a particular UID interaction’s component of an UID interaction.

These integration points with different granularity provide two alternatives for

evaluating Accessibility during the interaction between the user and the system. Then,

choosing the appropriate granularity and selecting a U-UI or U-UIc integration point

allow a better mapping of the elements composing the user interface design.

Figure 4.2: UID with Accessibility integration points: Login a Student given the Student’s ID

and Password

[VALIDSTUDENTINPUTDATA]

[INVALIDSTUDENTINPUTDATA]

Error in Input Data !!!

< 1 >

ID
Password

< 1.2 > IDForm

< 1.1 > KeyLockImage
SIU Guarani Registration System

Unidentified
Student

 Accessibility integration point
HTML image

 Accessibility integration point
HTML related controls

 UID < Enrolling a Student … >

Identified
Student

67

Figure 4.2 shows the resultant UID, corresponding to the use case “Login a Student

given the Student’s ID and Password” (presented in Section 4.2), by applying our

integration points technique. Notice that all the students (including those with

disabilities) will need to interact with this online login Web page (introduced in Section

1.1 by Figure 1.1). As we can see in the example shown in Figure 4.2, we define two

integration points at UID interaction <1> representing the student’s login user-system

interaction to consider, from the beginning, the Accessibility requirements that enable

the access for all the students.

The development of the UID diagram with integration points at Step 2 is graphically

represented by (2.1) in Figure 4.1.

Figure 4.3: SIG Template for Accessibility

4.3.2 Applying the SIG Template

After specifying the Accessibility integration points of the UID diagrams at Step 2, we

develop a SIG diagram for WCAG 1.0 Accessibility requirements. To do so, we take

into consideration proposals from the user interface design literature [27][36] introduced

in Section 3.3 as follows.

We have already seen that the dialogue class is directly represented by UIDs since they

help in modeling the content and the sequence of the information exchange between the

user and the system during navigation. However, presentation and pragmatic classes are

68

relevant too, so we propose considering the three classes --i.e. dialogue, presentation

and pragmatic, when drawing a SIG for Accessibility.

Figure 4.3 shows our SIG template where the Accessibility softgoal denoted with the

nomenclature Accessibility[UID integration point] is the root of the tree. The kind of the

UID integration point is highlighted into the root light cloud and related to a particular

UID interaction or UID interaction’s component number. From the root node we

identify two initial branches: (i) the user technology support, and (ii) the user layout

support. The user technology support represents the Accessibility softgoal concerns

helping to enable user’s browsing and interaction by improving the Accessibility of

user’s current and earlier assistive devices and technologies (PDAs, telephones, screen

readers, etc.); meanwhile, the user layout support represents the Accessibility softgoal

concerns explicitly improving user’s browsing and interaction focus on user’s interface

issues. The Accessibility softgoal concerns supply to their respective supports,

prescribing on how to present and/or to logically organize the content we wish to

convey to the user. They also warn about the Accessibility barriers as a consequence of

an inappropriate choice of presentation and/or structural objects to user’s interaction

with the content41. Now, with this statement in mind, in order to associate the three

design decision classes --i.e. dialogue, presentation and pragmatic, with the

Accessibility softgoal concerns at some of the SIG’s branches, we take into account the

following considerations:

! The concerns at the User Layout support are associated with the dialogue

and/or the presentation classes.

! The concerns at the User Technology support are associated with the dialogue

and/or the presentation classes if they help achieving device independence,

especially focused on supporting the constraints of earlier assistive devices --i.e.

“until user agents” as defined by the W3C’s UAAG 1.0 [48]; meanwhile, they

41 This last statement is compliant with the WCAG glossary that establishes three basic topics that

compose an Internet document: (i) the presentation --i.e. how the document is rendered?, (ii) the structure

-- i.e. how the document is organized logically?, and (iii) the content --i.e. what the document

communicates to the user?

69

are associated with the three classes (dialogue, presentation and pragmatic) if

they are hardware-dependent.

For example, returning to Figure 4.2, we establish the Accessibility softgoal for the

interaction’s components <1.1> KeyLockImage and <1.2> IDForm to support

accessible image and text input fields for all the students by defining two User-UID

Interaction’s components (U-UIc) integration points for the login process at UID

interaction <1>.

Finally, to instantiate the SIG template for gathering Accessibility concerns (shown in

Figure 4.3) we work with the W3C-WAI WCAG 1.0 guidelines [45] as follows.

To facilitate this instantiation process of the SIG template we establish an association

table for groups of related HTML elements. The instantiation process of the SIG

template is conducted as a refinement process over the SIG tree using these association

tables as a reference. For example, Table 4.1 introduces the association table that we

have developed for the HTML control group. Basically, these association tables have

the tasks of linking each ontology concept --i.e. abstract widget, with their respective

HTML elements --i.e. concrete widgets, and with the Accessibility concerns prescribed

for those widgets by the WCAG 1.0 checkpoints. It is important to clarify that we use

“HTML elements” as a general term, including HTML elements and attributes, as well

as embedded, internal and external objects like scripts, applets, style sheets, etc. This

means, that the allusion to “HTML elements” is extensive to include all the possible

widgets that may exist at a concrete user interface.

We will give a deeper explanation of the function of these association tables in Section

4.5.2 and since these association tables are developed for groups of related HTML

elements, we also provide in Section 4.5.1 our own classification by mapping the

ontology concepts (abstract widgets) onto five groups of HTML elements (concrete

widgets).

70

Table 4.1: Association Table for the HTML Control Elements Group

ASPECT ONTOLOGY
WIDGETS
(ABSTRACT
WIDGETS)

HTML
ELEMENTS
 (CONCRETE
 WIDGETS)

WCAG 1.0 CHECKPOINTS AND THEIR
PRIORITIES: [1] [2] OR [3]

DESIGN DECISION
CLASS
related to

USER-APPLICATION
INTERACTION 9.4

9.5
[3]

10.2

[2]

10.4

[3]

12.3

[2]

12.4

[2]

D-P
!

P

P

D-P D-P DIALOG (D)
PRESENTATION (P)
PRAGMATIC !

I.
TSCONTROL

SIG’S
USER

TECHNOLOGY
SUPPORT
BRANCH

INDEFINITEVARIABLE
TEXT FIELD INPUT TEXT… " " "

TEXT AREA TEXTAREA… " " "

RELATED

CONTROLS
FIELDSET… " "

PREDEFINEDVARIABLE

MULTIPLECHOICES

CHECK BOX INPUT CHECKBOX… " " M

MULTIPLE OPTION

MENU
SELECT MULTIPLE… " " "

RELATED OPTIONS OPTGROUP… " "

PREDEFINEDVARIABLE

SINGLECHOICES RADIO BUTTON INPUT RADIO… " " M

SIMPLE OPTION

MENU
SELECT… " " "

II.
LSCONTROL

SIG’S

USER LAYOUT
SUPPORT
BRANCH

INDEFINITEVARIABLE
TEXT FIELD INPUT TEXT… " "

TEXT AREA TEXTAREA… " "

RELATED

CONTROLS
FIELDSET… " "

PREDEFINEDVARIABLE

MULTIPLECHOICES

CHECK BOX INPUT CHECKBOX… " "

MULTIPLE OPTION

MENU
SELECT MULTIPLE … " "

RELATED OPTIONS OPTGROUP… " "

PREDEFINEDVARIABLE

SINGLECHOICES RADIO BUTTON INPUT RADIO… " "

SIMPLE OPTION

MENU
SELECT… " "

The development of the SIG diagram at Step 2 is graphically represented by (2.2) in

Figure 4.1.

4.4 Discovering Crosscutting and Applying Aspects

The activity of discovering Accessibility crosscutting concerns and applying

Accessibility aspects properly at the user interface design is defined as Step 3.

We exploit the Accessibility knowledge captured by SIG diagrams built at the user

71

interface design activity (Step 2) to find out how WCAG 1.0 Accessibility concerns

“crosscut” interface widgets. To achieve this, managing crosscutting in an aspect-

oriented manner, we use again our association tables introduced in Section 4.3.2. As we

said before, we will give a deeper explanation of the function of these association tables

in Section 4.5.2.

Let us return again to the use case “Login a Student given the Student’s ID and

Password” in Section 4.2, whose UID with Accessibility integration points is shown by

Figure 4.2 in Section 4.3.1. The purpose at Step 3 is to find out how WCAG 1.0

Accessibility concerns “crosscut” interface widgets required for the online login Web

page, aided by the abstract interface model shown in Figure 4.1 (3.1). More specifically,

the SIG diagrams and the association tables work together to discover the required

WCAG 1.0 checkpoints for helping the student’s login but also to show how aspect-

oriented “symptoms” (“scattering” and/or “tangling”) manifest their crosscutting nature

on the HTML image and HTML related control elements. For example, and as we will

see in-depth later, from guideline 10 responding to the statement “use interim42

solutions”, satisfacing the 10.4 checkpoint is a “mandatory” goal (set with an “M”) or

required for every HTML control element, and establishes that empty controls must be

handled correctly until “user agents”. So, to ensure this Accessibility requirement, the

checkpoint 10.4 will be “scatered” at the login Web page of the registration system

every time that an HTML text field element (corresponding to an IndefiniteVariable

widget) is present. It is important to highlight that ensuring compliance to Accessibility

is, in several cases, similar for those HTML elements sharing the same HTML group.

As we can see on Table 4.1, this is the case for the HTML control group. For those

cases where these minor differences exist, the aspect-oriented paradigm provides key

mechanisms to save distances smoothly --e.g. a variation in the application of the aspect

by an aspect instantiation or by the way the “advice” (aspect functionality code) and

“pointcut” (aspect applicability code) are specified.

42 Interim is used by the W3C as a temporary recommendation to ensure that while assistive technologies
and older browsers exist they will operate correctly.

72

4.5 Designing with Accessible Interface Widgets

The development of an accessible user interface design is defined as Step 4 and is

graphically represented by (4) in Figure 4.1, while the corresponding abstract and

concrete models are graphically represented by (3.1) and (4.1) respectively.

Having already completed the step-by-step description of our approach, we introduce

now our classification of HTML elements and we also give an explanation of the

association tables (used at Step 2 and Step 3). We decided to introduce these

conceptual tools in Section 4.5.1 and Section 4.5.2 respectively, since both are closely

related to interface widgets issues.

4.5.1 A Mapping between Ontology Concepts and HTML Elements

Taking into account the Abstract Widget Ontology [36] described in Section 4.3, we

map the ontology concepts onto HTML elements. We have materialized this mapping

using UML class diagrams to explain the relationships between each abstract interface

widget presented by the ontology concepts, and the concrete interface widget in HTML

elements. Figure 4.4 shows the UML class diagram for the ontology concept

VariableCapture, particularly for the ontology (sub) concepts IndefiniteVariable,

PredefinedVariable-SingleChoice and PredefinedVariable-MultipleChoice. The

ontology concept CaptureVariable, whose functionality is to capture the value of one or

more variables, is implemented in HTML by control elements. HTML control elements

can be grouped together in a form --i.e. an HTML related controls element, which is a

possible implementation of the ontology concept CompositeInterfaceElement. Users

interact with a form through HTML related controls by modifying their values before

submitting the form to an agent, like a Web server or a mail server, for processing.

Returning to the example of the login Web page for the student’s login, the abstract

interface model usually requests two IndefiniteVariable widgets of the VariableCapture

type. A CompositeInterfaceElement groups together these two widgets required for

receiving the user’s identification and password login values respectively. On the other

hand, the concrete interface model for the same login Web page maps these concepts on

two HTML text field widgets of the control type. An HTML related controls element

73

groups together these two widgets, which allow entering the text strings typed by the

user with previously unknown user’s name and password values.

Figure 4.4: Mapping between some Ontology Concepts and HTML Elements

In this way, we map the ontology concepts onto five groups of HTML elements as

follow:

! The VariableCapture maps onto the HTML control elements group, as we

shown in Figure 4.4;

! The SimpleActivator, which is capable of reacting to external events such as

mouse clicking, maps onto HTML link and button elements group;

! The ElementExhibitor, which is able to exhibit different types of content, such as

text, images or applets, maps onto HTML text and non-text elements group;

! The LogicalStructuring, which is able to logically organize the HTML content

of the document, maps onto the HTML structural elements group; and

! The ElementStyling, that is able to display the content with a certain appearance,

maps onto frame and style sheet elements group.

As shown in Figure 4.1, only three of these five groups are characterized by their

respective classes in the original abstract widget ontology [36]. Figure 4.5 shows how

we have extended this ontology with the LogicalStructuring and ElementStyling widget

classes in order to provide wider support to concrete widgets required by current user

Ontology Concepts
Abstract Interface Widgets

UML Model for HTML Elements
Concrete Interface Widgets

CompositeInterfaceElement

VariableCapture

VariableCapture
(sub) concepts

IndefiniteVariable

PredefinedVariable

SingleChoice

MultipleChoice

RelatedControls
1..*

1

…

TextField TextArea

RadioButton SingleSelectMenu

CheckBox MultipleSelectMenu

Control

74

interfaces, which are dynamic and with a high degree of complexity. The

LogicalStructuring class, groups structural widgets to define how the content is

organized logically, for example, with different levels of headers, by chapter, with an

introduction and table of contents, etc. While the ElementStyling class, groups

presentation widgets to define how the content is rendered, for example, as print, as a

two-dimensional graphical presentation, as a text-only presentation, as synthesized

speech, etc.

Figure 4.5: Extended Abstract Widget Ontology

Since most of the HTML elements are composed by other HTML elements, an

accessible HTML element requires the Accessibility of all its components. So a deeper

look about HTML elements composition is required to work properly with Accessibility

issues. Figure 4.6 explains HTML elements composition providing a more detailed

description of the HTML control elements: text field and text area; radio button and

single option menu; and check box and multiple option menu (see Figures 4.6 (a), 4.6 (b)

and 4.6 (c) respectively).

Figure 4.6: UML Model for HTML Control Elements

HTML Text Field and Tex Area
Elements

HTML Radio Button and Single
Option Menu Elements

HTML Check Box and Multiple
Option Menu Elements

 (a) (b) (c)

…

1

1

needsA

TextField TextArea

Control Label

1 …

needsA

1

1..*

letsChoose

1

1 1 hasAssociated

SingleOptionMenu

Control Option

Label

1..*

needsA

1

1..*

letsChoose

1

1

1

…

hasAssociated

CheckBox MultipleOptionMenu

Control

Label

Option

RadioButton

IndefiniteVariable

ContinuosGroup DiscreteGroup SingleChoices MultipleChoices

VariableCapture ElementExhibitor SimpleActivator

PredefinedVariable

AbstractInterfaceElement

CompositeInterfaceElement

ElementStyling LogicalStructuring

75

For example, the label is a very important element to achieve the goal of making a form

--i.e. HTML related controls element, accessible, because, if used correctly, it can

provide helpful support to people with disabilities. The WCAG 1.0 is very clear about

the Accessibility role of the label element when developing an HTML related controls

element. Specifically, the document provides two checkpoints, one related to the user

layout support and the other to the user technology support --i.e. precisely the two initial

branches of our SIG template for Accessibility, to be consider when “labeling” HTML

control elements that are associated into a form --i.e. HTML related controls element.

4.5.2 Association between Ontology Concepts-HTML Elements-

WCAG Checkpoints

To develop and exploit the SIG diagrams for managing crosscutting in an aspect-

oriented manner, we establish five association tables, one for each group of HTML

elements defined in Section 4.5.1: (i) the HTML control group as we shown in Figure

4.4 and Figure 4.6; (ii) the HTML link and button group; and (iii) the HTML text and

non-text group; (iv) the HTML structural group; and (v) the HTML frame and style

sheet group. We called them association tables because of two strong reasons. On one

hand, they bind the WACG 1.0 checkpoints required for ensuring Accessibility of the

interface widgets present at each HTML group --i.e. they identify the required

checkpoint for interface widgets present in a given Web page. On the other hand, they

help to classify these WCAG 1.0 checkpoints into the two initial branches of our SIG

template for Accessibility --i.e. they provide for each HTML element present in a group,

two generic aspects working for the user’s layout and technology Accessibility supports

respectively. This is possible because we find out that ensuring compliance to

Accessibility is in several cases very similar for those interface widgets that share the

same HTML group. That is, ensuring Accessibility does not normally differ much

between interface widgets that share the same group, and for those cases the aspect-

oriented paradigm provides key mechanisms to save these distances smoothly --e.g. a

variation in the application of the aspect by an aspect instantiation or by the way the

“advice” and “pointcut” are specified. As we said before, Table 4.1 introduces the

association table for the HTML control group. A checkpoint cell for a specific interface

76

widget is selected only when the HTML element requires considering the Accessibility

by the checkpoint. As we can see in Table 4.1, this association table also indicates each

checkpoint priority level assigned by the WCAG 1.0 [45]: (i) [Priority 1] checkpoints

that “must” be satisfied, (ii) [Priority2] checkpoints that “should” be satisfied and, (iii)

[Priority 3] checkpoints that “may” be satisfied. This information allows interface

designers to keep in mind the impact of the Accessibility barrier when not satisfying

each checkpoint. When a checkpoint cell is signed as “M” it means “mandatory” and

the HTML element implementation for the interface widget helps by itself compliance

to the checkpoint. To address Accessibility of the HTML related controls, guidelines 9,

10 and 12 deal with the question of what to do to make a form accessible [41][45][47].

On Table 4.1, Aspect I called “TSControl” evaluates control’s widgets Accessibility to

improve user’s current and earlier assistive devices and technologies; it is further

supported by softgoals to be satisfied at the SIG’s user technology support branch.

The association between Accessibility softgoal concerns (represented by the WCAG 1.0

checkpoints and their priorities) and the design decision classes is showed in the table

with a "P" for the presentation class, a "D" for the dialog class and by the "@" symbol

for the pragmatic class. Here we must remember that to associate the three design

decision classes --i.e. dialog, presentation and pragmatic, with the Accessibility softgoal

concerns at the user technology support SIG’s branch, we take into account the

considerations described in Section 4.3.2. Over this branch, satisfying checkpoints 9.4

and 9.5 responding to the statement “design for device-independence” of guideline 9

and, checkpoints 10.2 and 10.4 responding to the statement “use interim solutions” of

guideline 10, are goals required for every HTML control element. The checkpoint 9.4

establishes that we should “create a logical tab order through links, form controls, and

objects [Priority 3]” [45]. While the checkpoint 9.5 establishes that we should “provide

keyboard shortcuts to important links (including those in client-side image maps), form

controls, and groups of form controls [Priority 3]” [45]. Checkpoints 9.4 and 9.5 are

goals required for all the HTML control elements and are focused on providing

alternative access by tabbing navigation or access keys to HTML related controls

helping device- independency. This is important because it means that the user may

interact with the “user agent” or document with a preferred input (or output) device --

e.g. mouse, keyboard, voice, head wand, or others [45]. If, for example, an HTML

77

control element can only be activated with a mouse or other pointing device, someone

who is using the page without sight, with voice input, or with a keyboard or who is

using some other non- pointing input device will not be able to use the form --i.e. people

with motor, visual or cognitive disabilities who need these special devices to access the

Web.

The checkpoint 10.2 establishes that “until user agents support explicit associations

between labels and form control, for all form control with implicitly associated labels,

ensure that the label is properly positioned [Priority 2]” [45]. While the checkpoint 10.4

establishes that “until user agents handle empty controls correctly, include default,

place- holding characters in edit boxes and text areas [Priority 3]” [45]. Checkpoints

10.4 is a goal not required for HTML checkBox and radioButton elements since they

have an obligatory attribute that specifies the initial value of the control element.

On Table 4.1, Aspect II called “LSControl” evaluates control’s widgets Accessibility to

improve user’s interface issues, and it is supported by softgoals to be satisfied at the

SIG’s user layout support branch. Here, we must highlight again that to associate the

three design decision classes --i.e. dialog, presentation and pragmatic, with the

Accessibility softgoal concerns at the user layout support SIG’s branch, we take into

account the considerations described in Section 4.3.2. Over this branch, satisfying

checkpoints 12.3 and 12.4 responding to the statement “provide context and orientation

information” of guideline 12 are goals required for all the HTML control elements. The

checkpoint 12.4 establishes that “associate labels explicitly with their controls [Priority

2]” [45]. While, checkpoint 12.3 establishes “divide large blocks of information into

more manageable groups where natural and appropriated [Priority 2]” [45]. Checkpoints

10.3 and 10.4 are goals required for all the HTML control elements and are focused on

providing context and orientation information to help users understand complex pages

or HTML elements. For example, complex relationships between HTML control

elements as parts of a form on a Web page may be difficult for people with cognitive

disabilities and people with visual disabilities to interpret.

Similarly, to Table 4.1, we developed Tables to describe the rest of the four groups of

HTML elements. Following, we include Tables 4.2, 4.3, 4.4 and 4.5 for the groups of

HTML link and button, the HTML text and non-text, the HTML structural and, the

78

HTML frame and style sheet elements, respectively.

These five association tables cover thirteen out of the fourteen guidelines composing

the WCAG 1.0 document [45]. Only guideline 11 (and its checkpoints 11.1, 11.2, 11.3

and 11.4) corresponding to the statement “use W3C technologies and guidelines” is not

included in these association tables because this guideline is not required for specific

HTML elements. They remind developers using W3C technologies (e.g., HTML, CSS,

etc.) wherever possible because of the following reasons: (i) W3C technologies include

"built-in" Accessibility features, (ii) W3C specifications undergo early review to ensure

that Accessibility issues are considered during the design phase, and (iii) W3C

specifications are developed in an open, industry consensus process. So, since

checkpoints from guideline 11 provide generic recommendations for HTML documents,

they cannot be associated to specific elements of any HTML group.

For a deeper understanding of our proposal, in Chapter 5, we illustrate with a complete

case study, which we developed around the function for student’s login, shown in

Section 1.1 by Figure 1.1, corresponding to a typical student’s registration system, such

as the SIU Guarani registration system that we already mention.

79

Table 4.2: Association Table for the HTML Link and Button Elements Group

ASPECT ONTOLOGY
WIDGETS
(ABSTRACT
WIDGETS)

HTML
ELEMENTS
 (CONCRETE
 WIDGETS)

WCAG 1.0 CHECKPOINTS AND THEIR PRIORITIES: [1] [2] OR [3]
DESIGN DECISION

CLASS
related to

USER-APPLICATION
INTERACTION

1.2

[1]

1.5

[3]

9.1

[1]

9.4
9.5
[3]

10.5

[3]

13.4

[2]

13.5

[3]

13.6

[3]

1.1

[1]

13.1

[2]

D-P D-P D-P
!

D-P
!

D-P D-P
!

D-P
!

D-P P

D-P DIALOG (D)
PRESENTATION (P)
PRAGMATIC !

I.
TSLINK&BUTTON

SIG’S
USER

TECHNOLOGY
SUPPORT
BRANCH

SIMPLEACTIVATOR
LINK A HREF … !

IMAGE LINK A HREF, IMG, SRC… !

RELATED LINKS A HREF, MAP… ! ! ! ! !

IMAGE MAP SERVER-SIDE A HREF, IMG, SRC,
ISMAP…

! ! ! ! ! ! !

CLIENT-SIDE IMG, SRC, USEMAP,
MAP, AREA…

 ! ! ! ! ! ! !

PUSH BUTTON INPUT SUBMIT, INPUT RESET… !

GENERALIZED &

IMAGE BUTTON
BUTTON, INPUT IMAGE, IMG, SRC… !

II.
LSLINK&BUTTON

SIG’S

USER LAYOUT
SUPPORT
BRANCH

SIMPLEACTIVATOR

LINK A HREF… !
IMAGE LINK A HREF, IMG, SRC… ! !

RELATED LINKS A HREF, MAP… !

IMAGE MAP SERVER-SIDE A HREF, IMG, SRC,
ISMAP…

 ! !

CLIENT-SIDE IMG, SRC, USEMAP,
MAP, AREA…

 ! !

PUSH BUTTON INPUT SUBMIT, INPUT RESET…
GENERALIZED &

IMAGE BUTTON
BUTTON, INPUT IMAGE, IMG, SRC… !

80

Table 4.3: Association Table for the HTML Text and Non-Text Elements Group
ASPECT ONTOLOGY

WIDGETS
(ABSTRACT
WIDGETS)

HTML
ELEMENTS
 (CONCRETE
 WIDGETS)

WCAG 1.0 CHECKPOINTS AND THEIR PRIORITIES: [1] [2] OR [3] DESIGN DECISION
CLASS

related to
USER-APPLICATION

INTERACTION
1.3

[1]

1.4

[1]

6.4

[2]

7.1

[1]

7.2

[2]

7.3

[2]

7.4
7.5
[2]

8.1
[1]
[2]

9.2

[2]

9.3

[2]

10.1

[2]

13.10

[3]

14.2

[3]

1.1

[1]

2.1

[1]

2.2
[2]
[3]

4.1

[1]

4.2

[3]

6.3

[1]

14.1

[1]

D-P
!

D-P
!

P
!

D-P
!

D-P
!

D-P
!

D-P
!

D-P
!

D
!

P
!

D-P D-P
!

D-P
!

P P

P

P

P D-P

P DIALOG (D)
PRESENTATION (P)
PRAGMATIC !

I.
TSTEXT&NONTEXT

SIG’S

USER TECHNOLOGY
SUPPORT
BRANCH

ELEMENTEXHIBITOR
TEXT ALT, TITTLE,

LONGDESC…
 !

NON-TEXT,
MULTIMEDIA &

PROGRAMMATIC

OBJECTS

IMAGE IMG,
SRC…

GRAPHIC ASCII

ART…
 !

AUDIO,
VIDEO

OBJETC

,
PARAM

…

! ! !

APPLET, SCRIPT,
NONSCRIPT…

 ! ! ! ! ! ! ! ! !

II.
LSTEXT&NONTEXT

SIG’S

USER LAYOUT
SUPPORT
BRANCH

ELEMENTEXHIBITOR
TEXT ALT, TITTLE,

LONGDESC…
 ! !

[3]
! ! !

NON-TEXT,
MULTIMEDIA &

PROGRAMMATIC

OBJECTS

IMAGE, IMG,
SRC…

 ! ! !
[2]

GRAPHIC ASCII

ART…
 !

AUDIO,
VIDEO

OBJETC

,
PARAM

…

 !

APPLET, SCRIPT,
NONSCRIPT…

 ! !

81

Table 4.4: Association Table for the HTML Structural Elements Group
ASPECT ONTOLOGY

WIDGETS
(ABSTRACT
WIDGETS)

HTML
ELEMENTS
 (CONCRETE
 WIDGETS)

WCAG 1.0 CHECKPOINTS AND THEIR PRIORITIES: [1] [2] OR [3] DESIGN DECISION
CLASS

related to
USER-APPLICATION

INTERACTION

10.3

[3]

13.2

[2]

13.3

[2]

3.1

[2]

3.2

[2]

3.5

[2]

3.6

[2]

3.7

[2]

4.3

[3]

5.1

[1]

5.2

[1]

5.3

[2]

5.4

[2]

5.5

[3]

5.6

[3]

13.7

[3]

13.8

[3]

13.9

[3]

P

D-P
!

D-P
!

P P P

P

P

P P P

P

P

P

P D-P

D-P D-P

DIALOG (D)
PRESENTATION (P)
PRAGMATIC !

I.
TSSTRUCTURAL

SIG’S
USER

TECHNOLOGY
SUPPORT
BRANCH

LOGICALSTRUCTURING
VALIDATOR

& PROVIDER
HTML, HEAD, BODY,
TITTLE, DOCTYPE…

 !

IN GRID TABLE ! !

GENERIC DIV, SPAN...

HEADING H1-H6

BLOCK HEADER, MAIN, FOOTER,
BLOCKQUOTE, ADDRESS…

 !

IN SET LIST !

II.
LSSTRUCTURAL

SIG’S

USER LAYOUT
SUPPORT
BRANCH

LOGICALSTRUCTURING
VALIDATOR

& PROVIDER
HTML, HEAD, BODY,
TITTLE, DOCTYPE…

 ! ! ! !

IN GRID TABLE ! ! ! ! ! ! ! !

GENERIC DIV, SPAN... ! !

HEADING H1-H6 ! ! !

BLOCK HEADER, MAIN, FOOTER,
BLOCKQUOTE, ADDRESS…

 ! ! !

IN SET LIST ! ! !

82

Table 4.5: Association Table for the HTML Frame and Style Sheet Elements Group
ASPECT ONTOLOGY

WIDGETS
(ABSTRACT
WIDGETS)

HTML
ELEMENTS
 (CONCRETE
 WIDGETS)

WCAG 1.0 CHECKPOINTS AND THEIR PRIORITIES: [1] [2] OR [3] DESIGN DECISION
CLASS

related to
USER-APPLICATION

INTERACTION

6.5

[2]

10.1

[2]

1.1

[1]

3.3

[2]

3.4

[2]

6.1

[1]

6.2

[1]

12.1

[1]

12.2

[2]

14.3

[3]

D-P

!

D-P

P P P

P

D-P

D-P D-P P

DIALOG (D)
PRESENTATION (P)
PRAGMATIC !

I.
TSFRAME&STYLESHEET

SIG’S

USER TECHNOLOGY
SUPPORT BRANCH

ELEMENTSTYLING
FORMATTING &

POSITIONING
CSS, STYLE, STYLESHEET,

LINK REL…

SECTIONING &

SUBSPACES
FRAME, FRAMESET,

NOFRAME, IFRAME… ! !

II.
LSFRAME&STYLESHEET

SIG’S

USER LAYOUT
SUPPORT BRANCH

ELEMENTSTYLING
FORMATTING &

POSITIONING
CSS, STYLE, STYLESHEET,

LINK REL…
 ! ! ! !

SECTIONING &

SUBSPACES
FRAME, FRAMESET,

NOFRAME, IFRAME…
 ! ! ! ! ! !

84

5. APPLYING OUR PROPOSAL

5.1 A Case Study

The SIU Guaraní student registration system is been used by a number of public

universities in Argentina. It offers online information and/or diverse registration

functionalities to their students. Since these kind of online systems give support to an

educational organization, Accessibility is a main factor for all users but plays a key role

for students with disabilities. In the spirit of such systems, we define the case study to

apply our Aspect-Oriented approach, reusing the Student’s login and the University

home page examples, shown in Figures 1.1 and 2.1, respectively.

As Figure 5.1 shows, we propose a case study of 3 (three) level-deep navigation and 2

(two) optional anchors to get some help for data inputs ID and Password at the login

Web page. The first level, shown in Figure 5.1 (a), is the student’s University home

page where the student selects the link to his/her respective Faculty site from a group of

consecutive and related links. We highlight that we have already presented and

explained this page example in Section 2.2.1 (as shown in Figure 2.1), since it is the one

used to exemplify the related work. The second level, shown in Figure 5.1 (b), is the

student’s Faculty page that provides information about this institution among other

functionalities and, offers a link to the SIU Guaraní student registration system. Finally,

the third level, shown in Figure 5.1 (c), is the student’s login page example, which we

also have already presented and described in Section 1.1 (as shown in Figure 1.1) and

then in Section 4.2 by the use case “Login a Student given the Student’s ID and

Password”. From this third level, the student has the ability to browse for getting help

to ID and/or Password if he/she fails to login to the system. These two pages, shown in

Figure 5.1 (d), provide students with some helpful information and the chance to return

to the login Web page.

To carry out the implementation of our approach clearly, in Section 5.2 we follow the

step-by-step process as we described in Chapter 4 and depicted in Figure 4.1.

85

Figure 5.1: A Case Study

(a)

(b)

(c)

(d)

86

5.2 Our Proposal Step-by-Step on the Field

STEP 1. As highlighted in Figure 4.1 (1), we propose to manage the requirements of

the case study to identify those that involve user-system interaction. Specifically, we

focus on those requirements at the user interface (UI) that let the students reach the

login Web page browsing through the three level-deep navigation, which we defined

above for the case study, as follow:

! Level 1 – The Student’s University home page. The corresponding UI design

provides the interface widgets43 that allow the student to choose the anchor to

his/her Faculty from a set of Faculty names, which make up the student’s

University. In this case, as Figure 5.1 (a) shows, the UI design must include at least,

for each link to Faculties, a widget of the type SimpleActivator at the abstract

interface model mapped to the concrete interface model on a widget of the type

HTML link. Also, as shown in Figure 5.1 (a), the UI design must include an extra

link to skip the navigation bar. All these widgets are grouped together into a

CompositeInterfaceElement at the abstract interface model and mapped to a

concrete interface model on HTML related links. To complete de understanding of

this mapping, refer to the association table for the HTML link and button group

introduced in Section 4.5.2 by Table 4.2.

! Level 2 – The Student’s Faculty page. Basically, as Figure 5.1 (b) shows, the UI

design must include, for the link to the SIU Guaraní registration system, a clear

widget of the type SimpleActivator at the abstract interface model mapped to the

concrete interface model on a widget of the type HTML link. To complete de

understanding of this mapping, refer to the association table for the HTML link and

button group introduced in Section 4.5.2 by Table 4.2.

! Level 3 – The Student’s Login page. The corresponding UI design provides the

interface widgets that allow the student to login the SIU Guarani registration system.

In this case, as Figure 5.1 (c) shows, the UI design must include at least, for the

student’s identification purpose, two widgets of the type IndefiniteVariable at the

43 To make this Step-by-Step explanation clearer, whenever we use “widgets” without specifying of

which type, we are referring to both, abstract and concrete ones.

87

abstract interface model mapped to the concrete interface model on two widgets of

the type HTML text field. The mission of these widgets is to receive the student’s

ID and Password values. Normally, these two widgets are grouped together into a

CompositeInterfaceElement at the abstract interface model and mapped to the

concrete interface model on HTML related controls to create a form. To complete

the understanding of this mapping, refer to the association table for the HTML

control group introduced in Section 4.3.2 by Table 4.1.

! Levels 1, 2 and 3. These three UI designs also provide text and images for student’s

information purpose. In this case, the UI designs must include three widgets of the

type ElementExhibitor at the abstract interface models mapped to the concrete

interface models on three widgets of the type HTML image. The mission of these

widgets is to include the University logo (as shown in Figure 5.1 (a)), the Faculty

picture (as shown in Figure 5.1 (b)), and the image of the key-lock (as shown in

Figure 5.1 (c)). To complete de understanding of this mapping, refer to the

association table for the HTML text and non-text group introduced in Section 4.5.2

by Table 4.3.

! Level 4 – Help pages (Optional). These two UI designs provide some instructive

text about the data inputs ID and Password. In this case, as Figure 5.1 (d) shows,

each UI design must include, for allowing the student to go back to the login page, a

clear widget of the type SimpleActivator at the abstract interface model mapped to

the concrete interface model on a widget of the type HTML link. To complete de

understanding of this mapping, refer to the association table for the HTML link and

button group introduced in Section 4.5.2 by Table 4.2.

It is important to highlight that browsing these pages is optional and therefore, if the

student follows these help links, his/her decision will produce a different navigation

path. At this point, we are focused on the UI models because, undoubtedly, is at the

UI level where Accessibility barrier finally show; but in Section 6.3, we will revisit

this argument to discuss the potential of our approach to deal with situations that

could affect the Accessibility of the navigational models.

! Levels 1, 2, 3 and 4. Also, these four UI designs must consider widgets of the type

ElementStyling at the abstract interface models mapped to the concrete interface

88

models on widgets of the type HTML formatting & positioning. The mission of

these widgets is to define the appearance of the content --i.e. the look-&-feel of the

UI. To complete de understanding of this mapping, refer to the association table for

the HTML frame and style sheet group introduced in Section 4.5.2 by Table 4.5.

Figure 5.2: UID with integration points for the Case Study

STEP 2. As highlighted in Figure 4.1 (2.1) and (2.2), for specifying Accessibility

concerns, we encourage the early capture of these Accessibility requirements by

applying the UID and SIG conceptual tools.

[INVALIDSTUDENTINPUTDATA]

Error in Input Data !!!

[VALIDSTUDENTINPUTDATA]

< 3 >

ID
Password

< 3.2 > IDForm
< 3.1 > KeyLockImage

SIU Guarani Registration System

 Accessibility integration point
HTML image

 Accessibility integration point
HTML link

 Accessibility integration point
HTML image

 Accessibility integration point
HTML related controls

 Accessibility integration point
HTML image

 Accessibility integration point
HTML related links

Unidentified
Student

< 1 >

< 1.1 > UniversityLogo
University(universityName, universityLogoImage)
 < 1.2 > … FacultyLinks(facultyName)

[SELECT1FACULTY]

< 2 >

< 2.1 > FacultyPicture
Faculty(facultyName, facultyPictureImage)

 < 2.2 > SIUGuaraniLink

 UID < Enrolling a Student … >

Identified
Student

 ID Help

 Password Help

< 4 >

89

STEP 2.1. We develop the UID diagram with integration points for the case study. As

shown in Figure 5.2, at the UID interactions <1>, <2>, <3> and <4>, we outline the

integration points that remain the Accessibility concerns that are crucial at each

navigation level described above, as follow:

! Level 1 – UID Interaction <1>. We set <1.2> integration point for the HTML

HTML related links corresponding to the links to Faculties.

! Level 2 – UID interaction <2>. We set <2.2> integration point for the HTML link

corresponding to the link to the SIU Guarani registration.

! Level 3 – UID interaction <3>. We set <3.2> integration point for the HTML

related controls corresponding to the form for the student’s identification. The

Accessibility concerns, which are required by the related HTML text fields that

make up the form, are relevant to a successful login information exchange between

the student and the application, during the execution of the identification function.

! Levels 1, 2 and 3 – UID interactions <1, 2, 3>. We set <1.1>, <2.1> and <3.1>

integrations points for the HTML images corresponding to the images of the

University logo, the Faculty picture and the key-lock, respectively.

! Level 4 – UID interactions <4> (Optional). As we already said before, from Level

3, it is possible to browse to get some help for data inputs ID and Password.

Although in Figure 5.2 we have not included details about the integration points

required for these pages, we can set them for the HTML text and the HTML link

corresponding to a helpful text and a link that clearly allows the student to return to

the login Web page, respectively.

! Levels 1, 2, 3 and 4 – UID interactions <1, 2, 3, 4>. In Figure 5.2 we have not set

integrations points for the HTML formatting & positioning to make simpler the

understanding of the diagram and because, as we will see in Step 2.2, these are

Accessibility concerns required in general for all Web pages.

STEP 2.2. We instantiate the SIG template for the Accessibility integration points

outlined by the UID interactions <1>, <2>, <3> and <4> in Step 2.1, to identify WCAG

1.0 Accessibility requirements. In Section 3.5, we presented the basis of the SIG’s

notation and vocabulary and then, in Section 4.3.2, we explained how we extended this

90

conceptual tool into a template to handle the Accessibility concerns. At this template,

the focus of the Accessibility softgoal is highlighted into the root light cloud. The user

technology support and the user layout support branches are specified into light clouds

and dark clouds respectively. The light clouds represent the refined Accessibility

softgoal --i.e. the required WCAG 1.0 guidelines; while the dark clouds represent

operationalizing goals --i.e. the required checkpoints to be satisfied. At this point, note

that the association tables presented in Sections 4.3.1 and 4.5.2 help to the SIG

instantiation process. Applying the SIG template for Accessibility, we develop the SIG

diagrams at each navigation level, as follow:

! Level 1 – SIG diagram at the UID interaction <1>. As shown in Figure 5.3, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <1> called

HTML University home. From this root, we define an Accessibility softgoal for the

UID interaction component (U-UIc) <1.2> FacultyLinks, to help to accessible

related links for all the students, including those with disabilities. In this case, to

support the SIG instantiation process, we use Table 5.2 for the HTML link and

button group, since the Accessibility softgoal is defined for the HTML related links

element to Faculties. Next, we explain the refinement process for the SIG

instantiation at the UID interaction <1>.

Figure 5.3: SIG instantiation for the UID interaction <1>

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE TECHNOLOGY INDEPENDENCE

+

13.1

+ -
+

13.5 13.4 13.6 9.4

 U-UI
< 1 > HTML UNIVERSITY HOME

 U-UIC
< 1.2 > HTML RELATED LINKS U-UIC

< 1.1 > HTML IMAGE

10.5

USER LAYOUT SUPPORT

+ -

9.5

+ - + - + - +

+

2.2

++

2.1

++

1.1

91

Firstly, looking at the user technology support branch in Figure 5.3, a distinction

between “technology independence” and “technology dependence” is made in

concordance with the distinction made in Section 4.3.2. To help to the universal

access of devices to the HTML related links element, we chose an AND-

decomposition; but the choice for an AND/OR decomposition will depend on the

designer’s decisions and the application’s constraints. For “technology

independence”, satisfying goals related to guidelines 10 and 13 for checkpoints 10.5

and 13.6 compliance are required. Otherwise for “technology dependence”,

satisfying goals related to guidelines 9 and 13 for checkpoints 9.4 and 9.5; 13.5 and

13.4 compliance are required. Now looking at the user layout support, satisfying

goals related to guideline 13 for checkpoint 13.1, compliance is required for the

HTML related links element.

Figure 5.4: SIG instantiation for the UID interaction <2>

! Level 2 – SIG diagram at the UID interaction <2>. As shown in Figure 5.4, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <1> called

HTML Faculty page. From this root, we define an Accessibility softgoal for the UID

interaction component (U-UIc) <2.2> SIUGuaraniLink, to help to an accessible link.

Here, to support the SIG instantiation process, we also use Table 5.3 for the HTML

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE

+

13.1 9.4

 U-UI
< 2 > HTML FACULTY PAGE

 U-UIC
< 2.2 > HTML LINK

 U-UIC
< 2.1 > HTML IMAGE

USER LAYOUT SUPPORT

9.5

+ - + -

+

2.2

++

2.1

++

1.1

92

link and button group, since the Accessibility softgoal is defined for the HTML link

element to the SIU Guarani registration system. Next, we explain the refinement

process for the SIG instantiation at the UID interaction <2>.

Firstly, looking at the user technology support branch in Figure 5.4, “technology

dependence”, for satisfying goals related to guideline 9 for checkpoints 9.4 and 9.5,

compliance are required for the HTML link element. Now looking at the user layout

support, for satisfying goal related to guideline 13 for checkpoint 13.1, compliance

is required for the HTML related links element.

Figure 5.5: SIG instantiation for the UID interaction <3>

! Level 3 – SIG diagram at the UID interaction <3>. As shown in Figure 5.5, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <3> called

HTML SIU Guarani page. From this root, we define an Accessibility softgoal for

the UID interaction components (U-UIc) <3.2> IDForm, to help to accessible

related controls. In this case, to support the SIG instantiation process, we use Table

5.1 for the HTML control group, since the Accessibility softgoal is defined for the

HTML related controls element, which is a form composed of two HTML text

fields for student identification purpose. Next, we explain the refinement process for

the SIG instantiation at the UID interaction <3>.

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE TECHNOLOGY INDEPENDENCE

+

12.4 10.4 9.5

 U-UI
< 3 > HTML SIU GUARANÍ PAGE

 U-UIC
< 3.2 > HTML RELATED CONTROLS

 U-UIC
< 3.1 > HTML IMAGE

10.2

USER LAYOUT SUPPORT

9.4

+ + - + - + -

+

2.2

++

2.1

++

1.1

+

12.3

93

Firstly, looking at the user technology support branch in Figure 5.5, we chose an

AND-decomposition, as we already did at the SIG instantiation at UID interaction

<1> and for the same reasons. For “technology independence”, for satisfying goals

related to guideline 10 for checkpoints 10.2 and 10.4, compliance are required.

Otherwise for “technology dependence”, for satisfying goals related to guideline 9

for checkpoints 9.4 and 9.5, compliance are required. Now looking at the user layout

support, for satisfying goals related to guideline 12 for checkpoint 12.3 and 12.4,

compliance are required for the HTML related controls element.

! Levels 1, 2 and 3 – SIG diagrams at UID interactions <1, 2, 3>. As shown in

Figures 5.3, 5.4 and 5.5, we focus the main Accessibility softgoals on the UID

interactions (U-UI) <1, 2, 3>. From these roots, we define Accessibility softgoals

for the UID interaction components (U-UIc) <1.1> UniversityLogo, <2.1>

FacultyPicture and <3.1> KeyLockImage to help to accessible HTML image

elements at each page. In this case, to support the SIG instantiation process, we use

Table 5.3 for the HTML text and non-text group, since these Accessibility softgoals

are defined for the HTML image elements of the University logo, the Faculty

picture and the key-lock respectively. Next, we explain the refinement process for

the SIG instantiation at the UID interactions <1, 2, 3>.

Figure 5.6: SIG instantiation for the UID interactions <1, 2, 3, 4>

Looking at the user layout support branches in Figures 5.3, 5.4 and 5.5, for

satisfying goals related to guidelines 1 and 2 for checkpoints 1.1, 2.1 and 2.2,

USER LAYOUT SUPPORT

+ -

14.3

++

3.4 6.1 3.3

 U-UI
< 1, 2, 3, 4 > HTML STYLESHEETS

+ + + +

94

compliance are required for the HTML image elements. In Section 4.1, we have

already said, that there are situations in which we can develop artifacts once and

then reused them, as they are required; at Step 2 in Figure 4.1 (2.1) and (2.2), we

have indicated the reuse capability of our approach with input/output arrows.

Clearly, this is one of those situations, since the Accessibility softgoal for the

HTML image element can be modeled once and then applied for the SIG

instantiation, as they are required. As Figures 5.3, 5.4 and 5.5 show, we surrounded

with dotted lines the UID interaction components (U-UIc) <1.1>, <2.1> and <3.1>

for the HTML image elements to highlight the reusable artifact applied to the SIG

diagrams of the case study.

! Level 4 – SIG diagram at UID interactions <4> (Optional). At this level, we

proceed in the same way as for the previous levels. We do not give details about this

optional level, because we consider it doesn’t provide new knowledge about

developing the SIG diagrams for Accessibility concerns.

! Levels 1, 2, 3 and 4 – SIG diagram at UID interactions <1, 2, 3, 4>. As shown in

Figure 5.6, we focus the main Accessibility softgoal on the UID interactions (U-UI)

<1, 2, 3, 4> called HTML Stylesheets. Here, to help the SIG instantiation process,

we use Table 5.5 for the HTML frame and style sheet group, since the Accessibility

softgoals are defined for the HTML style sheet elements to provide formatting and

positioning support to the user layout. Next, we explain the refinement process for

the SIG instantiation at the UID interactions <1>, <2>, <3> and <4>.

Looking at the user layout support branch in Figure 5.6, for satisfying goals related

to guidelines 3, 6 and 14 for checkpoints 3.3 and 3.4, 6.1, 14.3, compliance are

required for the HTML style sheet element.

STEP 3. As highlighted in Figure 4.1 (3), for the user interface design activity, we

exploit the Accessibility knowledge captured and organized by SIG diagrams in Step

2.2. The purpose here is to find out how WCAG 1.0 Accessibility concerns “crosscut”

the user interface widgets (abstract and concrete ones). In order to make our discussion

clear, we focus on explaining how the SIG’s operationalizing goals --i.e. the required

WCAG 1.0 checkpoints to be satisfied for an accessible student’s login -- “crosscut” the

components of each HTML element corresponding to an abstract interface ontology

95

widget. Since applying the required WCAG 1.0 checkpoints to be satisfied at the user

interface causes typical crosscutting symptoms --i.e. “scattering” and “tangling”

problems -- it is clear that aspect-orientation is the natural approach to solve these

crosscutting symptoms. The SIG diagrams not only provide Accessibility technology

and layout support respectively for any of the HTML elements at the user interface, but

also allow Aspects to be modeled and instantiated appropriately to avoid “scattering”

and “tangling” problems. Then Aspects can be seamless injected by the “weaving”

mechanism into the core --i.e. user interface models, to achieve the Accessibility

softgoal and as a consequence an HTML code with the desired conformance to the

WCAG 1.0. As shown in Figure 4.1 (3.1), we work on the abstract user interface

required at each navigation level, as follow:

Figure 5.7: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

related links element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

! Level 1 – UI model at UID interaction <1>. As shown in Figure 5.7 through a

diagram similar to UML, whenever there is an HTML related links element at the

user interface model, Aspect I “TSRelatedLink” and Aspect II “LSRelatedLinks”,

focused on solving technology and layout Accessibility issues respectively, are

injected to avoid the “scattered” and “tangling” nature of Accessibility checkpoints

9.4 and 9.5, 10.5, 13.4 and 13.5, 13.6 and 13.1 over HTML related links classes.

HTMLRELATEDLINKS (COMPOSITEINTERFACEELEMENT)

HTMLLINKTEXT

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING
SYMPTOMS

II. LSRELATEDLINKS 13.1 identifyTarget()

HTMLLINK
(SIMPLEACTIVATOR)

I. TSRELATEDLINKS 9.4 tabOrderLink() 9.5 keyAccessLink()
 10.5 nonAdjacentLinks()
 13.4 consistentNavigation()
 13.5 navigationBar()
 13.6 groupRelatedLinks()

96

Figure 5.8: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <1>

The addition of Aspect I “TSRelatedLinks” and Aspect II “LSRelatedLinks” reminds

later, at the implementation of the concrete interface model (as shown by Figure 4.1

(4.1), conformance to the following Accessibility concerns for each HTML related links

element: (i) creating a logical tab order and/or providing keyboard shortcuts for links,

(ii) including non-link, printable characters (surrounded by spaces) between adjacent

links, (iii) using navigation mechanisms in a consistent manner and providing

navigation bars to highlight and give access to the navigation mechanism, (iv) grouping

related links, identifying the group and providing a way to bypass the group and, (v)

clearly identifying the target of each link. Figure 5.8 shows the accessible HTML

corresponding to the student’s University home example, whose screenshot is shown in

Figures 2.1 and 5.1 (a).

! Level 2 – UI model at UID interaction <2>. As shown in Figure 5.9 through a

diagram similar to UML, whenever there is an HTML link element at the user

interface model, Aspect I “TSLink” and Aspect II “LSLink”, focused on solving

technology and layout Accessibility issues respectively, are injected to avoid the

CONFORMANCE TO WCAG 1.0
CHECKPOINTS 9.5, 10.5, 13.4, 13.5, 13.6

AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

97

“scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5, and 13.1

over HTML link classes.

Figure 5.9: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML link

element (Concrete Interface Widget) corresponding to a SimpleActivator (Abstract Interface

Widget)

The addition off Aspect I “TSLink” and Aspect II “LSLink” reminds later, at the

implementation of the concrete interface model (as shown by Figure 4.1 (4.1)),

conformance to the following Accessibility concerns for each HTML link element: (i)

creating a logical tab order and/or providing keyboard shortcuts for links and, (ii)

clearly identifying the target of each link.

Figure 5.10: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <2>

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING
SYMPTOMS

II. LSLINK 13.1 identifyTarget()

HTMLLINK
(SIMPLEACTIVATOR)

HTMLLINKTEXT

I. TSLINK 9.4 tabOrderLink() 9.5 keyAccessLink()

CONFORMANCE TO WCAG 1.0

CHECKPOINTS 9.5 AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

98

Figure 5.10 shows the accessible HTML code corresponding to the student’s Faculty

page example, whose screenshot is shown in 5.1 (b).

! Level 3 – UI model at UID interaction <3>. As shown in Figure 5.11 through a

diagram similar to UML, whenever there is an HTML related controls element,

which in this case comprises two HTML text field elements at the user interface

model, Aspect I “TSRelatedControls” and Aspect II “LSRelatedControls”, focused

on solving technology and layout Accessibility issues respectively, are injected to

avoid the “scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5,

10.2 and 12.4, 10.4 and 12.3 and over HTML related controls classes.

Figure 5.11: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

related controls element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

The addition off Aspect I “TSRelatedControls” and Aspect II “LSRelatedControls”

reminds later, at the implementation of the concrete interface model (as shown by

Figure 4.1 (4.1)), conformance to the following Accessibility concerns for each

HTML related controls element: (i) creating a logical tab order and/or providing

keyboard shortcuts for controls, (ii) supporting explicit association between HTML

label elements and controls, (iii) handling empty controls correctly by including

default, place-holding characters and, (iv) grouping related controls with HTML

fieldset and legend elements. Figure 5.12 shows the accessible HTML code

corresponding to the student’s login page example, whose screenshot is shown in

Figures 1.1 and 5.1 (c).

HTMLRELATEDCONTROLS (COMPOSITEINTERFACEELEMENT)

HTMLLABEL

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING
SYMPTOMS

II. LSRELATEDCONTROLS 12.4 explicitAssociation()

HTMLTEXTFIELD
(INDEFINITIVEVARIABLE)

I. TSRELATEDCONTROLS 9.5 keyAccessControl() 9.4 tabOrderControl()
 10.2 promptPosition() 10.4 defaultCharacters()

 12.3 groupRelatedControls()

99

Figure 5.12: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <3>

! Level 1, 2 and 3 – UI models at UID interactions <1, 2, 3>. As shown in Figure

5.13 through a diagram similar to UML, whenever there is an HTML image

element, Aspect II “LSImage”, focused on solving layout Accessibility issues, is

injected to avoid the “scattered” nature of Accessibility checkpoints 1.1, 1.2 and 2.2

over HTML image classes.

The addition of Aspect II “LSImage” reminds later, at the implementation of the

concrete interface models (as shown by Figure 4.1 (4.1)), conformance to the

following Accessibility concerns for each HTML image element: (i) adding a text

equivalent for every image with a HTML alt-text element and, (ii) not relying on

images’ color alone to convey information. Figures 5.8, 5.10 and 5.12 show the

CONFORMANCE TO WCAG 1.0
CHECKPOINTS 9.4, 9.5, 10.2, 10.4, 12.3

AND 12.4
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

100

accessible HTML corresponding to the student’s University home page, the Faculty

page and the login page examples, whose screenshot are shown in Figures 5.1 (a),

5.1 (b) and 5.1 (c), respectively. As we can see in these HTML files, all the HTML

image elements have their corresponding text equivalent.

Figure 5.13: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

image element (Concrete Interface Widget) corresponding to an ElementExhibitor (Abstract

Interface Widget)

! Level 4 – UI models at UID interaction <4> (Optional). At this level, we proceed

in the same way as for the previous levels. We do not give details about this optional

level, because we consider it doesn’t provide new knowledge about developing the

user interface models.

! Level 1, 2, 3 and 4 – UI models at UID interactions <1, 2, 3, 4>. As shown in

Figure 5.14 through a diagram similar to UML, whenever there is an HTML style

sheet element, Aspect II “LSStylesheet” focused on solving layout Accessibility

issues, is injected to avoid the “scattered” nature of Accessibility checkpoints 3.3,

3.4, 6.1 and 14.3 over HTML style sheet classes.

Figure 5.14: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

style sheet element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLIMAGE
(ELEMENTEXHIBITOR)

HTMLALT-TEXT

II. LSIMAGE 1.1 textEquivalent() 2.1 infoWithoutColor()
 2.2 useConstrastColors()

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLSTYLESHEET
(COMPOSITEINTERFACEELEMENT)

II. LSSTYLESHEET 3.3 useStylesheetLayout&Presentation()
 3.4 useRelativeUnitsPositioning()
 6.1 makeAvailableWithoutStlysheet()
 14.3 useConsistentStylePages()

101

The addition of Aspect II “LSStylesheet” reminds later, at the implementation of the

concrete interface models (as shown by Figure 4.1 (4.1)), conformance to the

following Accessibility concerns for each HTML style sheet element: (i) using style

sheets to control page layout and presentation, (ii) using relative rather than absolute

units in markup language attribute values and style sheet property values, (iii)

organizing documents so they may be read without style sheets and, (iv) creating a

style of presentation that is consistent across pages. The HTML pages

corresponding to the student’s University home page, the Faculty page, the login

page and the help pages examples, whose screenshot are shown in Figures 5.1 (a),

5.1 (b), 5.1 (c) and 5.1 (d) respectively, keep a consistent styling across pages. As

we can see in Figures 5.8, 5.10 and 5.12, for formatting and positioning purpose,

these pages use an HTML style sheet element.

STEP 4. As highlighted in Figure 4.1 (4), for the user interface developing activity we

exploit the aspects applied for solving Accessibility crosscutting concerns discovered in

Step 3. As another way of illustrating how these aspects were seamless injected in an

abstract user interface to obtain a concrete user interface (at the design level) and then

an accessible and well formed HTML at the implementation level, we can express the

Accessibility concerns conveyed by aspects using a pseudo-code language. We provide

some examples for each level defined for the case study in Figure 5.1, as follow:

! Level 1 – Aspect I and Aspect II in the UI model at UID interaction <1>.

ASPECT I. TSRELATEDLINKS
POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.SimpleActivator == HTML related links

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderLink == HTML tabindex element ! 9.5 keyAccessLink == HTML accesskey element !

10.5 nonAdjacentLinks == HTML printable characters as “[“ and “]” !

13.4 consistentNavigation == W3C Core Techniques for navigation !

13.5 navigationBar AND 13.6groupRelatedLinks == HTML map element.

ASPECT II. LSRELATEDLINKS
POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.SimpleActivator == HTML related links

PROPERTY ADVICE ADD ACCESSIBILITY CONDITION 13.1 identifyTarget == HTML clear link text OR HTML tittle

element.

102

! Level 2 – Aspect I and Aspect II in the UI model at UID interaction <2>.

ASPECT I. TSLINK
POINTCUT ALL INTERFACE WIDGETS WITH SimpleActivator == HTML link

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderLink == HTML tabindex element ∧ 9.5 keyAccessLink == HTML accesskey element.

ASPECT II. LSLINK
POINTCUT ALL INTERFACE WIDGETS WITH SimpleActivator == HTML link PROPERTY ADVICE ADD ACCESSIBILITY

CONDITION 13.1 identifyTarget == HTML clear link text OR HTML tittle element.

! Level 3 – Aspect I and Aspect II in the UI model at UID interaction <3>.

ASPECT I. TSRELATEDCONTROLS
POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.IndefiniteVariable == HTML related controls

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderControl == HTML tabindex element ∧ 9.5 keyAccessControl == HTML accesskey element ∧

10.2 promptPosition == HTML for element ∧

10.4 defaultCharacters == HTML value element ∧

12.3 groupRelatedControls == HTML fieldset element AND HTML legend element.

ASPECT II. LSRELATEDCONTROLS

POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.IndefiniteVariable == HTML related controls

PROPERTY ADVICE ADD ACCESSIBILITY CONDITION 12.4 explicitAssociation == HTML for element.

! Level 1, 2 and 3 – Aspect II in UI models at UID interactions <1, 2, 3>.

ASPECT II. LSIMAGE

POINTCUT ALL INTERFACE WIDGETS WITH ElementExhibitor == HTML image

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

1.1 textEquivalent == HTML alt element OR HTML longdesc element ∧

2.1 infoWithoutColor AND 2.2 useContrastColor == W3C HTML, Core AND CSS Techniques for color.

! Level 4 – Aspects in UI models at UID interaction <4> (Optional). At this level,

we proceed in the same way as for the previous levels. We do not give details about

this optional level, because we consider it doesn’t provide new knowledge about

injecting aspects in UI models.

! Level 1, 2, 3 and 4 – Aspect II in UI models at UID interactions <1, 2, 3, 4>.

ASPECT II. LSSTYLESHEET

POINTCUT ALL INTERFACE WIDGETS WITH ElementStyling.Formating&Positioning == HTML stylesheet

103

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

3.3 useStyleSheetLayout&Presentation AND 3.4 useRelativeUnitsPositioning AND

6.1 makeAvailableWithoutStylesheet AND 14.3 useConsistentStylePages == W3C HTML, Core AND CSS

Techniques for controlling layout and presentation.

These are high-level specifications to avoid “scattering” and/or “tangling” symptoms

caused by Accessibility concerns. The pointcut/advice pair specifies that, for all HTML

widget of a specific kind (the pointcut specification), conditions satisfying Accessibility

requirements are added (the advice specification).

As a result of modeling these aspects (using SIGs prescriptions for WCAG 1.0

checkpoints) and the addition of these aspects to deal with the targeted interface

widgets, Figures 5.8, 5.10 and 5.12 show the accessible implementations for the

concrete user interface models for the 3 (three) level-deep navigation case study in

Figure 5.1, in terms of “well formed” HTML like W3C document [45].

Figure 5.15: The supporting tool within our Aspect-Oriented design process

104

5.3 A Supporting Tool for Our Approach

Today, no one can deny the significance of having a supporting tool. The supporting

tool and the kind of support given and features covered by the tool is relevant,

especially to a design proposal. Related to this issue, our approach provides an initiative

for a supporting tool to assist developers in the implementation of cases, and on the

creation of their corresponding models by using reusable components. Currently, as

Figure 5.15 shows, the tool provides assistance at Step 3 of the design process for

applying the Accessibility aspects (prescribed by the SIGs diagrams) to user interface

models --i.e. abstract and concrete user interface models.

To achieve with its main purpose, the tool must deal with the concepts previously

described, such as SIG diagrams, association tables and abstract user interface models.

Also, the tool should be at the user’s fingertips --i.e. the tool should be part of the users’

development environment. To solve the second issue, the tool was developed as an

Eclipse44 plug-in, integrating an XML45 editor in combination with the necessary views

to inform the user about the missing information required for an accessible user

interface --i.e. tags and attributes for a well-formed and accessible markup, as we

describe in Section 5.3.2, and also to provide options to fix these missing information.

At this point, we introduce a brief explanation for the rational of choosing XML as the

markup language to support resources and their future development as the tool evolves.

Since XML allows writing our own markup language, we are not restricted to a limited

set of tags defined by proprietary vendors. Custom tags are used to bring meaning to the

data being displayed and when stored this way, data becomes extremely portable

because it carry with their description rather than their display. In this way, XML allows

the display to be extracted from the data and incorporated into a style sheet. Some of the

benefits of this important XML characteristic are: (i) changes to display do not require

futzing with the data, since a style sheet will specify the display, (ii) searching the data

is easy and efficient, since tags provide the search engines with the intelligence they

lack, (iii) complex relationships like trees and inheritance can be communicated and,

44 The Eclipse Foundation at http://www.eclipse.org/
45 W3C Extensible Markup Language (XML) at http://www.w3.org/XML/

105

(iv) the XML code is much more legible to a person coming into the environment with

no prior knowledge. Other XML properties are: (i) it has stricter grammar rules than

HTML that helps to develop well-formed documents --e.g. forgetting a label in an XML

document makes the file unusable, (ii) it is a platform independent language and widely

distributed and, (iii) it was developed by the W3C that also keeps its specification. The

design goals of XML emphasize simplicity, generality, and usability over the Internet.

Following we introduce the proposed tool, describing the basis of its architecture, layers

and classes, and also the resources and interfaces through which developers interact for

designing accessible user interfaces.

5.3.1 Architecture’s Overview: Layers and Classes

Figure 5.16 shows the tool’s architecture and its three main layers, which are:

Presentation, Object Storage and Core.

Figure 5.16: Main components of Our supporting tool

The Presentation layer represents the user interface for designers and developers. The

main classes in the Presentation layer are:

106

! AccessibilityTool class, which represents the XML editor.

! InterfaceParser class, which includes the functionality of identifying and

highlighting syntax errors.

! WCAConsole class, which provides functionality to show the non-commitment to

the WCAG in a structured way. The name of this view stands for Web Content

Accessibility Console, as a general view to include all the Accessibility issues.

The Object Storage layer represents an abstraction for the different underlying resource

structures. Then, requests for information about WCAG 1.0 checkpoints [45], present in

the SIG structure or in the tool database, are solved using the services of this layer. The

main classes for the Object Storage layer are:

! SIGHandler class, which provides the necessary functionality to access the

contained information in SIG structure file --i.e. the checkpoints to commit for a

specified tag present in the abstract user interface.

! GuidelinesHandler class, which as the previous class, provides the needed

functionality to access the contained information in the Guidelines file.

! CheckpointManager class, which provides the needed functionality to access

information of different checkpoints. This class uses CheckpointManager to retrieve

information about a checkpoint from the database file and maintain a pool of

previously retrieved checkpoints.

! Checkpoint, CheckpointTag and SuggestedAttribute classes, which represent the

models for accessing information about the element that each one represents.

Specifically, SuggestedAttribute represents an attribute that needs to be added (or

deleted) in a tag --i.e. CheckpointTag, to meet a specific Checkpoint.

Finally, the Core layer includes those classes that play a central role for the tool’s

functionality. Those classes are:

! CheckpointCommiter class, whose functionality includes the analysis and

determination of commitment of an HTML tag to the WCAG recommendations.

Also, it provides the functionality to generate the element code --i.e. HTML tag or

attribute, to fix the non-commitment.

107

! InterfaceAnalizer class, which provides the functionality of coordination for the

analysis of the abstract user interface model. This class has an aspect-based

implementation done in AspectJ46, which is the central feature that will allow the

completion of the analysis in a transparent manner --i.e. solving Accessibility

crosscutting problems by injecting aspects smoothly.

Particularly, in Figure 5.16, we focus on the Presentation layer, which is isolated from

the other layers and it is only related to the Core layer by a dotted line, meaning that

there is no straight interaction between these two layers. Thus, the interaction between

these two layers, which includes reading and analyzing the abstract user interface model

under treatment, takes place in a transparent manner. This abstract user interface model

is an XML file, as we following see in Section 5.3.2. To reproduce this behavior, the

tool uses the Observer pattern47 and their classes Subject and Observer; each instance of

the Subject class maintains a list of instances of the Observer class that are notified of

the changes that occur in their respective instance of the Subject class. By applying

these design concepts, the AccessibilityTool class plays the role of Subject, while the

InterfaceAnalizer class plays the role of Observer. Then, the aspects environment --i.e.

the AspectJ capabilities, manages the update notifications. Thus, when the developer

saves the XML document edited for the abstract user interface model, this automatically

triggers this aspect-oriented functionality, which is not explicitly invoked by some

element of the Presentation layer. As shown in Figure 5.15, the consequence at Step 4.1

is the deliverable of a concrete HTML user interface model that improves conformance

to WCAG 1.0 Accessibility requirements.

5.3.2 Tool’s Resources: XML Schemas and Specifications

Figure 5.16 shows three XML files representing the input/output resources of the tool,

which are AbstractInterface, SIG, and Guidelines. Following, we explain the

relationship of these resources with our design proposal and we also provide their

46 The AspectJ Development Tool at http://www.eclipse.org/ajdt/
47 Object-Oriented Design and Programming: Observer Pattern at http://www.oodesign.com/observer-

pattern.html

108

respective XML schema. Using examples, we show how to instantiate these XML

schema for specifying the XML files.

Figure 5.17: Model-driven principles applied to UI model development

The AbstractInterface XML file represents the abstract user interface model. As we

have explained in previous chapters, our design approach uses the model-driven

paradigm to develop high-level descriptions of the user interface structure and behavior

and, from these declarative models to obtain the end-user interface. Figure 5.17

illustrates these design concepts, which are implemented by WE methods [31], such as

OOHDM [36], which we have applied to develop our approach and supporting tool.

Figure 5.18 shows, the AbstractInterface XML schema48 that we develop for

specifying machine-understandable abstract user interface models. The most important

tags of this XML schema are Interface, Component, Composite and Attribute.

Figure 5.18: XML schema for the Abstract User Interface model

The specification of documents based on this schema begins with an Interface element,

which can comprise Composite and Component elements. Also, a Composite element

48 W3C XML Schema at http://www.w3.org/XML/Schema

 Level 1 Level 2 Level 3

 Concrete UI model

specification

 Abstract UI model

specification

Requirement

Model End-User Interface

109

can comprise Component elements resulting in a hierarchy of elements. Each tag has a

modeling function within the AbstractInterface XML schema and its own descriptive

attributes, as follow:

! The Interface tag is the container for the structure of an abstract user interface. The

Interface tag has two descriptive attributes: (i) name, which identifies the Interface

element under develop and, (ii) description, which states the purpose of the

Interface element and the Composite and Component elements that are comprised

within the Interface element.

! The Component tag represents the widgets that make up the abstract user interface.

The Component tag has three descriptive attributes: (i) id, which identifies the

Component element under development, (ii) type, which assign to the Component

element a simple ontology widget and, (iii) maps-to, which links the Component

element to a simple HTML element --e.g. an HTML text field element which is

usually codified by using an HTML input element.

! The Composite tag is a container within an Interface element that comprises

Component elements. The Composite tag has two descriptive attributes: (i) id, which

identifies the Composite element under development and, (ii) maps-to, which links

the Composite element to a composite HTML element --e.g. an HTML related

controls element which is usually codified by using an HTML fieldset element.

! The Attribute tag represents the attributes that will be part of a concrete HTML

element conveyed by “map-to” attributes. To complete the user interface design, the

user adds some of these attributes, while the tool suggests others to solve

Accesibility concerns.

Figure 5.19 shows the XML file specified applying the AbstractInterface XML schema

to part of the case study shown in Figure 5.1 (c). As we can see in this specification, a

Composite element is included at line 4 to represent the student identification FORM,

which is a composite HTML element comprising two Component elements. These two

INPUTs are Component elements included at lines 5 and 7 respectively, to represent the

HTML text field elements required for the student’s name and password. The pair of

attributes type and maps-to allow the association between ontology widget-HTML

110

element --e.g. the Component elements at lines 5 and 7 are of the ontology type

indefiniteVariable and maps-to HTML input elements.

Figure 5.19: XML specification of an abstract user interface model

The SIG XML file represents the Softgoal Interdependency Graph (SIG) template for

Accessibility and, as shown in Figure 5.20, we develop the SIG XML schema for

specifying machine-understandable SIG diagrams. The most important tags of this SIG

XML schema are SIG, Node and Relation.

Figure 5.20: XML schema for the SIG template for Accessibility

The specification of documents based on this SIG XML schema begins with a SIG

element linked to a main Node element, which in turn can comprises one or more Node

elements through a Relation element. Thus, the Relation element allows a hierarchy

specification for a SIG element. Each tag has a modeling function within the SIG XML

schema and its own descriptive attributes, as follow:

1. <interface name="student’s login" description="An interface for

the student’s login at the SIU Guarani registration system">

2. <component id="guaraniLogo" type="elementExhibitor" maps-to="IMG">

3. </component>

4. <composite id="studentID" maps-to="FORM">

5. <component id="studentName" type="indefiniteVariable" maps-

to="INPUT">

6. </component>

7. <component id="studentPassword" type="indefiniteVariable" maps-

to="INPUT">

8. </component>

9. </composite>

10. </interface>

111

! The SIG tag is the container for the structure of a SIG diagram for Accessibility.

The SIG tag has two descriptive attributes: (i) name, which identifies the SIG

element under develop and, (ii) description, which focus on the Accessibility

softgoal of the SIG element through its main Node element --i.e. which, as we

already explained in Section 5.2, is called the root light cloud of the SIG diagram

applying the SIG terminology.

! The Node tag represents a node, which, as we have already explained in Section 5.2,

is called a cloud of the SIG diagram applying the SIG terminology. Thus, a Node

element can represent a root or a refined Accessibility softgoal –i.e. a white cloud of

the SIG diagram applying the SIG terminology, or an operationalizing goal for the

required checkpoints to be satisfied –i.e. a dark cloud of the SIG diagram applying

the SIG terminology. The Node tag has two descriptive attributes: (i) type, which

specifies the type of a Node element depending on its Accessibility softgoal and, (ii)

topic, which describes the Accessibility softgoal to be satisfied. While, the type of

the Node attribute can be one of the following:

- U-UI type, if the softgoal comprises Accessibility requirements to be

satisfied at an interaction level in the UID diagram. We can use the U-UI

type for a Node element representing a root Accessibility softgoal in the SIG

diagram --e.g. in Figure 5.5, the U-UI root cloud for the SIU Guarani home

page.

- U-UIc type, if the softgoal represents Accessibility requirements to be

satisfied at a component level in the UID interaction. We can use the U-UIc

type for a Node element representing a refined or an operationalizing goal of

the SIG diagram --i.e. in Figure 5.5, the U-UIc refined cloud for the HTML

related controls element representing the student’s identification form.

- Decomposition type, if the Node element represents an Accessibility

softgoal refinement by decomposition –i.e. in Figure 5.5, the Decomposition

cloud at the User Technology Support branch for the HTML related controls

element.

! Operationalizing type, if the Node element represents an Accessibility

operationalizing goal –i.e. in Figure 5.5, the Operationalizing dark clouds

representing Accessibility requirements to be satisfied.

112

! The Relation tag applies for a parent Node element and its children, allowing a

hierarchy specification for a SIG element. The Relation tag has only one descriptive

attribute, type, which specifies the type of the relationship established between the

parent Node element and its children. While, the type of the Relation attribute can

be one of the following:

- AND type, which represents the conjunction relationship, where all the

children representing Accessibility softgoals must be satisfied to satisfy its

parent Node element.

- OR type, which represents the disjunction relationship, where satisfying

some of the children representing Accessibility softgoals satisfied the parent

Node element.

- OPERATIONALIZING type, which represents the Accessibility

operationalizing goal of the parent Node element. These operationalizing

goals implement concrete Accessibility requirements on which a validation

can be performed to establish conformance. For the instantiation of the

Accessibility requirements, our tool applies the WCAG 1.0 checkpoint [45],

but as we will explain in Chapter 6, our design proposal can work also with

the WCAG 2.0 success criteria [46].

! The NodeList tag is a container for a list of Node elements within a Relation

element. Therefore, the NodeList tag can comprise one or more Node elements that

are children of a parent Node element.

Figure 5.21 shows the XML file specified applying the SIG XML schema to part of the

XML specification of the abstract user interface model in Figure 5.20. As shown at line

1, the softgoal to be satisfied --i.e. the Accessibility concern of the SIG diagram, is set

in order to improve the Accessibility for all the students accessing the SIU Guarani

registration system. The root Node element at line 2 is of the type U-UI because its

Accessibility softgoal targets the UID interaction representing the home page of the

system. This root Node element is decomposed into two refined Node elements at lines

5 and 19 by a Relation element of the type AND at line 3. These two Node elements are

of the type U-UIc because their Accessibility softgoals target the IMG and FORM

components at the UID interaction representing the home page of the system. The

softgoal refinement process continues over the tree to develop the SIG diagram for

113

Accessibility, until specific operationalizing goals are met. For example, at line 11 the

Node element is of the type operationalizing and in consequence instantiates the topic

attribute with the checkpoint 1.1 to establish a concrete Accessibility requirement to be

satisfied.

Figure 5.21: XML specification of a SIG diagram for Accessibility

The Guidelines XML file represents the Accessibility guidelines from the WCAG 1.0

recommendations [45], which are stored accordingly to a structured language we

especially develop. As we have already seen in previous chapters, there is a gap

between the abstract knowledge transmitted by guidelines, which are expressed in

natural language, and their implementation using a markup language such as HTML,

1. <sig name="student’s login" description="SIG instantiation for

an accessible user interface for the student’s login at the SIU

Guarani registration system">

2. <node type=”U-UI” topic="HTML SIU Guarani Page">

3. <relation type="AND">

4. <nodeList>

5. <node type="U-UIc" topic="IMG">

6. <relation type="AND">

7. <nodeList>

8. <node type="decomposition" topic="USER LAYOUT SUPPORT">

9. <relation type="OPERATIONALIZING">

10. <nodeList>

11. <node type="operationalizing" topic="1.1" />

12. ...

13. </nodeList>

14. </relation>

15. </node>

16. </nodeList>

17. </reation>

18. </node>

19. <node type=”U-UIc” topic=”FORM”>

20. <relation type=”AND”>

21. <nodeList>

22. <node type=”decomposition” topic=”USER TECHNOLOGY LAYOUT”>

23. ...

114

which is based on a technical specification49. Trying to reduce this gap, we propose a

structured language for guidelines, which we called in Spanish LEP (Lenguaje de

Estructura de Pautas). As Figure 5.22 shows, LEP is positioned between natural

language and HTML, simplifying not only the human comprehension of guidelines but

also their storage as structures specified by a XML schema. Therefore, LEP is a

specification language to adapt the structure of the Accessibility guidelines from

WCAG 1.0 recommendations and make them possible to be managed by our tool.

Figure 5.22: Levels of expressiveness to Accessibility Guidelines comprehension

The W3C-WAI [50] has specified systematically the 14 (fourteen) guidelines of the

WCAG 1.0 recommendations (see the complete document at Appendix I). Each

guideline within the WCAG 1.0 recommendations [45] includes: (i) the guideline

number, (ii) the statement of the guideline (iii) the rationale behind the guideline and

some groups of users who benefit from it and, (iv) a list of checkpoint definitions. The

checkpoint definitions in each guideline explain how the guideline applies in typical

content development scenarios. Each checkpoint definition includes: (i) the checkpoint

number, (ii) the statement of the checkpoint, (iii) the priority of the checkpoint (the

priority levels are 1, 2, 3), (iv) optional informative notes, clarifying examples, and

cross references to related guidelines or checkpoints and, (v) a list of techniques where

implementations and examples of the checkpoint are discussed to facilitate the

checkpoint evaluation and conformance.

49 W3C HTML 4 Specification at http://dev.w3.org/html5/spec/Overview.html

NATURAL LANGUAGE

STRUCTURED LANGUAGE
FOR GUIDELINES (LEP)

HTML MARKUP LANGUAGE

LEVEL OF
ABSTRACTION

GUIDELINES
COMPREHENSION

Medium

High

Low

Easy

Moderate

Complex

115

Now, to adapt this Accessibility information provided by WCAG 1.0 recommendations,

we consider the formalization of those elements that are relevant to the expressiveness

of the stored structures for providing the proper support required by the tool. Figure

5.23 shows the Guidelines XML schema we develop based on LEP --i.e. our

supporting language, to allow the adaptation of the Accessibility guidelines and to store

their structures as machine-understandable representations. The most important tags of

the Guidelines XML schema are Guidelines, Guideline, Checkpoint, Tag and Attribute.

Figure 5.23: XML schema for the Accessibility guidelines from WCAG 1.0

As we can see in Figure 5.23, each Guideline element has a list of Checkpoint elements

and each Checkpoint element has a list of Tag elements --i.e. HTML tags, which are the

target of the Checkpoint element. For example, if a Checkpoint element establishes that

an HTML table element must summary its content --i.e. checkpoint 5.5 from WCAG

1.0, the Checkpoint element will include a Tag element for the HTML table element

and, the Tag element will include an Attribute element for the HTML summary element.

[GUIDELINE NUMBER] – [STATEMENT OF THE GUIDELINE]

[CHECKPOINT NUMBER] – [STATEMENT OF THE CHECKPOINT] – [PRIORITY OF THE CHECKPOINT]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

Provides an explanation of the checkpoint and its foundations to compliance. [SEMI-AUTOMATIC]
Requires the developer’s
manual intervention with
the tool’s support.

OR

[MANUAL]
Requires the developer’s
manual intervention
without the tool’s
support.

SAMPLE: Provides topics on how to implement the checkpoint using well-formed and accessible HTML.

SAMPLE IN LEP SPECIFICATION: Provides examples of how the checkpoints are specified in LEP.

Figure 5.24: Adapting the WCAG 1.0 checkpoints to the schema based on LEP

116

The Guidelines XML schema based on LEP, convey information through the following

tags:

! The Guidelines, which allow beginning a new file and containing its structure.

! The Guideline, which provides id, title and description of a specific WCAG 1.0

guideline; also includes a list of its checkpoints.

GUIDELINE 1. PROVIDE EQUIVALENT ALTERNATIVES TO AUDITORY AND VISUAL CONTENT

CHECKPOINT 1.1 Provide a text equivalent for every non-text element (e.g., via "alt", "longdesc", or in element content).
This includes: images, graphical representations of text (including symbols), image map regions, animations (e.g.,
animated GIFs), applets and programmatic objects, ascii art, frames, scripts, images used as list bullets, spacers,
graphical buttons, sounds (played with or without user interaction), stand-alone audio files, audio tracks of video, and
video. [PRIORITY 1]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

• Use "alt" for the IMG, INPUT, and APPLET elements, or provide a text equivalent in the
content of the OBJECT and APPLET elements.

• For complex content (e.g., a chart) where the "alt" text does not provide a complete text
equivalent, provide an additional description using, for example, "longdesc" with IMG or
FRAME, a link inside an OBJECT element, or a description link.

• For image maps, either use the "alt" attribute with AREA, or use the MAP element with A
elements (and other text) as content.

[SEMI-AUTOMATIC]

SAMPLE:
<img src="guarani3w.jpg"
alt=""
longdesc="../descrip/decor.htm#guarani3w">

SAMPLE IN LEP SPECIFICATION:
<tagList>
<tag id=”1” name=”IMG” type=”” condition-type=””>

<attributes>
<attribute name=”ALT” sample”img src="guarani3w.jpg" alt="*"
action=”add” type=”HTMLAttribute” condition=”mandatory”/>

</attributes>
</tag>

</tagList>

Figure 5.25: Adapting checkpoints 1.1 to the schema based on LEP

! The Checkpoint, which provides id, priority (1, 2, 3) and description of a specific

WCAG 1.0 checkpoint; also includes the appliance, which is “semi-automatic”

when the checkpoint requires the developer’s manual intervention with the tool’s

support or is “manual” when requires the developer’s manual intervention without

the tool’s support, and a list of the HTML tags concerning to the checkpoint.

! The Tag, which provides id, which is a number assigned for identification purpose

and is not related with WCAG 1.0 guidelines and checkpoints numbers, name (the

117

HTML tag name), and type/condition-type, which allow to specify the tag use case/s

where the guideline/checkpoint applies to the tag; also includes a list of its

attributes.

! The Attribute, which provides name (the HTML attribute or tag name), action (add,

modify, update or delete), type (HTML tag, HTML attribute, text attributes, etc.),

condition, which allows specifying if the attribute is mandatory or optional, and

sample, which provides an application example.

The preservation of the WCAG philosophy was our goal when we worked on the

Accessibility guidelines seeking for a specification manageable by the tool. Figure 5.24

summarizes the basis for analyzing and adapting the WCAG 1.0 checkpoints to the

Guidelines XML schema based on LEP, while Figure 5.25 shows part of the analysis

and adaptation for checkpoint 1.1. For example, this specification applies to satisfy the

operationalizing softgoal in the SIG diagram shown in Figure 5.21, line 11.

Figure 5.26: Basis of the Aspect-Oriented design cycle

5.3.3 Tool’s User Interfaces

From the user’s point of view the interaction with the tool applies an “open-save-close”

cycle to the document under develop. The developer designs an abstract user interface

Modeling Abstract User Interface

Showing Accessibility Crosscutting
Concerns

Solving Accessibility Symptoms
Applying Aspects

118

for a given Web page by editing and saving changes in an XML-based document. This

mode for developing documents is usually known as document-centered work schema.

Figure 5.26 shows the basis of the aspect-oriented design cycle in the interaction

between the developer and our tool, where we can identify the following steps:

! Modeling Abstract User Interface, the developer designs the abstract user

interface model choosing widgets from the abstract widget ontology.

! Showing Accessibility Crosscutting Concerns, the tool shows how the

Accessibility concerns crosscut the interface widgets selected to compose the user

interface by the developer.

! Solving Accessibility Symptoms Applying Aspects, the developer decides, based

on the information provided by the tool and the tool wraps, these Accessibility

crosscutting concerns into Accessibility aspects for their modularization and

transparent injection in the user interface under design.

Figure 5.27: The components integrated in the Eclipse platform

For this reason, one of the main components of the tool’s UI is the XMLEditor, which is

complemented with the view WCAConsole for showing, and allow solving the non-

119

commitment to the Accessibility guidelines. Figure 5.27 shows a screenshot of these

tool components integrated in the Eclipse platform. The XMLEditor is shown in the

upper box of screen in Figure 5.27 and is used by the developer to edit the abstract user

interface model. When the developer saves the XML file and its changes, the analysis of

the structure and commitment to the Accessibility guidelines is launched. The analysis

result is shown in a structured manner using the view WCAConsole, which is shown in

the lower box of the screen in Figure 5.27 and also and also in Figure 5.28. The

WCAConsole comprises two other components. The one on the left side of the

WCAConsole is a tree view, which shows to the developer the missing elements and/or

errors in the implementation of elements for every tag present in the abstract user

interface. This tree view is based on the SIG diagram for Accessibility and also shows

related tags that should be in an accessible a well-formed user interface.

Figure 5.28: The WCAConsole component

The other component on the right side of the WCAConsole is a read-only description

view, which shows to the developer the following information, for each selected

element of the component on the left side:

! Attribute/Tag condition (Mandatory/Optional): Indicates to the developer

whether the selected element (tag or attribute), is mandatory, as shown in Figure

5.28, or optional, as shown in Figure 5.27, to satisfy the guideline/checkpoint.

! Action (Add/Remove): Indicates to the developer the action to perform with the

selected element (tag or attribute), if the element should be added (or must be added

if the condition is mandatory) to the abstract user interface or removed.

120

! Sample usage: Provides to the developer an example on how to properly use in

HTML the element (tag or attribute).

! Correct code: Shows to the developer the necessary XML code to insert the

element (tag or attribute) in the abstract interface model to commit to the

Accessibility guidelines.

5.3.4 Some Insights about the Tool

Our supporting tool, which was conceived prioritizing early Accessibility design, helps

developers on the application of our Aspect-Oriented proposal to create user interfaces.

The tool provides support at Step 3 of the design process to discover crosscutting

concerns and apply aspects from the knowledge captured about Accessibility

requirements in previous stages. Following the approach’s basis, the type of support

and features covered by the tool can be described as those that usually provide a

Computer-Aided Software Engineering (CASE) tool with model-driven properties. As a

CASE tool, our supporting tool results helpful in creating models of cases. These

models can be developed using reusable components and this is possible because of two

reasons. On one hand, the Accessibility guidelines are quite independent from the Web

application under development, so there are many cases to which the same Accessibility

solution can be applied. Then, recording such recurrent situations (e.g., using patterns)

enables to reuse them, which contribute to reduce the development effort when

implementing our proposal. On the other hand, the Accessibility aspects as we

proposed, could be developed once and be reused in different Web projects. For

example, returning to the student’s login Web page example in Figure 5.1 (c),

establishing a logical tab order for accessing the HTML text field elements for the

student ID and password, is an Accessibility concern that forces crosscutting in the

implementation. The early identification of this situation allows modeling a reusable

Accessibility aspect that is going to be in charge of providing an HTML tabindex

element for each text field element at the user’s layout. Currently, since the function for

reusing components is not fully implemented, our tool provides assistance for applying

the Accessibility aspects (prescribed by some predefined and stored SIG diagrams) to

an abstract user interface model loaded by the designer.

121

As visible disadvantages of our supporting tool, we believe it is important to highlight

the following issues: (i) although the part of the approach that is supported by the tool is

completely documented and self-contained within a well-known Web engineering

approach, its comprehension requires a prior knowledge of the WCAG 1.0 (or 2.0)

guidelines and their specific terminology and also of the AOSD basis; (ii) although the

tool helps to transfer Accessibility concerns, the engineering staff members should not

be ruled by ad hoc practices, or used to apply approaches, which have not incorporated

the design and documentation of the application under development as an standard

discipline. These two issues demand changes in the development process that must be

supported by the organizations.

As a final note, we provide our supporting tool aiming to help and, as a consequence,

encourage, Web development in designing user interfaces with the Accessibility quality

factor in mind.

122

123

6. COMPARING OUR PROPOSAL

6.1 Comparison Criteria
In order to compare and discuss the main characteristics of the different approaches, we

developed an evaluation framework, as Figure 6.1 shows, which is divided into three

main criteria: Accessibility, Design and Other criteria. Each of these topics deals with

different issues of the approaches in order to describe them and analyze their strengths

and weaknesses when developing an accessible Web site and from a Web engineering

perspective. Following, we explain the meaning of the three main criteria through their

set of topics.

Figure 6.1: Evaluation Framework

Accessibility criteria. We propose these criteria to assess the degree of commitment

with Accessibility by evaluating three topics: purpose, assessment and treatment.

We analyze the purpose earliest and in the context of the Accessibility criterion,

because the main focus of our evaluation is on the support given to Accessibility during

a Web site development process. Here we evaluate the degree of commitment to

Accessibility by considering only two possible scores --i.e. “medium” and “high”,

because we have already selected approaches with a certain relation with Web

Paradigm

 Main
Other

Technique

No
Yes -- Description Support

 Textual Medium
 High

Purpose
Statement Commitment

Textual Medium

High

Assessment

WCAG 1.0 or/and 2.0
Generic
Other
Not specified

Treatment
Description Completeness

Textual Partial
 Full

ACCESSIBILITY
CRITERIA

Model
Description Completeness

Textual Partial
 Full

DESIGN
CRITERIA

Supporting tool

No
Yes -- Characteristics

Background approaches
Name Purpose

 Textual

OTHER
CRITERIA

EVALUATION FRAMEWORK

within MDSD?

124

Accessibility. So a “low” score is out of range for the purpose of this comparison. The

differences between the “medium” and “high” scores are set depending on whether

Accessibility is the main concern of the approach under consideration.

In addition, because the results can be broadly different depending on the applied

reference guidelines, the assessment topic aims to establishing the Accessibility

conformance criteria applied by the approach. In this case the options are “WCAG” (1.0

or/and 2.0)50 [48][49], “generic”, “other” or “not specified”. We are particularly

interested on those approaches applying WCAG guidelines because as we said before it

is a World-Wide reference normative. We choose “generic” when the approach

proposes to consider standards and guidelines develop for several domains51, such as

Accessibility for e-Learning, software, PDF format, Java language, media and Web

content, but it does not apply directly to any particularly. An “other” choice states that

the approach can apply any “other” practice --e.g. using an ontology, an heuristic, a

markup framework, etc., to analyze and treat Web page Accessibility at some stages of

the development process --e.g. analysis and design, implementation, etc., and to

generate an accessible Web page version. Finally, we decided to include a "not

specified" choice for those approaches whose focus is not exclusively on Accessibility,

so they do not need to model using a particular Accessibility principle, standard or

guideline.

Finally, the treatment topic refers to the way Accessibility is handled by the approach.

In addition it is important to highlight that many other issues can be taken into account

related to Web Accessibility requirements, for example, the type of user disability --i.e.

visual, motor, cognitive, deaf, etc. For the treatment topic, we are particularly interested

in establishing how the approach deals with Accessibility requirements during a Web

site development. We believe that Accessibility should be considered as part of the Web

design process instead of being evaluated by a post-design repair process. This is the

reason why at the analysis of this topic we are mainly interested on establishing the

degree of completeness with which the approach handles Accessibility through the

stages of the development process. For the purpose of evaluating the treatment topic we

50 An Overview to WCAG Standards at http://www.w3.org/WAI/intro/wcag.php

51 A list of Accessibility resources at http://www.accesstechnologiesgroup.com/Resources

125

provide a brief description to highlight the stage (or stages) of the design process where

the approach concentrates the Accessibility efforts. Then we evaluate the degree of

completeness using only two possible scores --i.e. “partial” and “full”, because we

selected approaches with a certain relation with modeling Accessibility. So a “low”

score is out of range for the purpose of this comparison. We set a “full” score when the

approach allows the integration of Accessibility from an early stage, and gives support

through the whole Web design process; otherwise, a “partial” score is set.

Design criteria. We propose these criteria to evaluate design issues of the approaches

under consideration by using three topics: paradigm, model and techniques.

At the paradigm topic, firstly we are interested in identifying if a main paradigm or

some other combination of paradigms is used by the approach to deal with Accessibility

at design. Since our comparison is framed within Web Engineering (WE) principles, we

are also interested in identifying if the approach follows a Model-Driven Software

Development (MDSD)52 as the core operational paradigm to drive the development

process. This kind of approaches are usually classified as Model-Driven Web

Engineering (MDWE) [31], since they address the different concerns involved in the

design and development of a Web application using separate models (such as content,

navigation and presentation), and these models can then be supported by model

compilers that produce most of the application’s Web pages and logic right from the

original models [31]. In consequence, we propose “main”, “other” or “main/other

within MDSD” options for the paradigm topic. At this point it is important to highlight

that we are specially focusing on approaches using the AOSD paradigm to deal with

Accessibility at design, because we believe that aspect orientation allows managing

Accessibility’s nature properly and as a first-class citizen.

The model topic refers to models provided by the approach to deal with Accessibility,

and in particular the user interface model, since it is at the user’s interface level where

52 As we already said, one of the best-known MDSD initiatives is called Model-Driven Architecture

(MDA) from OMG at http://www.omg.org/mda/One. The MDA framework, together with its related

acronym Model-Driven Development (MDD), are registered trademark of the OMG, trademarks within

the Unified Modeling Language (UML) is central. Web Engineering is a specific domain in which MDSD

can be successfully applied.

126

Accessibility barriers mostly shown. We introduce in first place a brief description of

the basis of the model proposed by the approach. It is highly desirable that this model

fully maps the criteria assumed for treating Accessibility --i.e. the treatment and model

topics must be in concordance and reinforce each other. For the purpose of the model

topic evaluation, we focus on what elements of an interface model are addressed by the

approach and how they are addressed taking into account the fact that these elements

are the media for holding an Accessible user-system interaction. We suggest two

possible scores, “partial” and “full”, to define the degree of completeness with which

the model specifies the interface elements. We propose to analyze this degree of model

completeness from three perspectives: (i) the quantity and granularity of the interface

elements considered by the model; (ii) the level of detail with which the model

represents these elements; and further, (iii) the consistency and continuity of a main

paradigm with which the approach defines and applies the model to deal with the

Accessibility of the interface elements. We attach a “full” score, when the model

provides the necessary mechanisms for dealing with the Accessibility required by the

interface elements. Otherwise, we set a “partial” score. Again, a “low” score is out of

range because of the selected approaches for the purpose of the comparison.

Finally, we introduce the technique topic to consider the case in which the approach

proposes some proprietary technique to complement itself. In the case of an affirmative

answer, we provide a brief description of the technique and its name --if any, and we

also evaluate this technique from the perspective of providing support to enrich the

design level and to reinforce the Accessibility treatment. When the technique is

specifically proposed to provide this kind of support we score it as “high”; otherwise we

use a “medium” score.

Other criteria. We propose these criteria to consider two additional topics:

background and supporting tool. We include the background topic to consider the case

in which the approach takes into account and/or is based-on previous work. Since we

believe that the approach’s basis is relevant to the approach’s strength, for each

previous work we provide the name and the purpose within its respective approach.

Finally, we introduce the supporting tool topic to indicate whether the approach has an

associated supporting tool or not. Also it is important the kind of support given and

127

features covered by the tool in order to contribute to the development of an accessible

Web application. Therefore, if the approach provides a tool, some extra considerations

about the characteristics of the tool are also given here.

Table 6.1: Accessibility Criteria applied to the six approaches

ACCESSIBILITY CRITERIA

Approach Purpose Assessment Treatment

Statement Commitment Description Completeness

A1

Plessers et al.
[35]

Generate the semantic
annotations (authoring and
mobility Accessibility concepts)
for visually impaired users as a
by-product of the Web design
process.

High Other Applies its own developed
semantic annotations through a
transformation process at the
WSDM Implementation Design
phase.

Full

A2

Centeno et al.
[9]

Provide Accessibility support in a
Web composition process
managed by a design tool.

High WCAG

(1.0)

Uses a set of compliance rules,
which are based on the WCAG
1.0 checkpoints, to ensure
accessible Web pages from the
composition of accessible HTML
snippets.

Partial

A3

Casteleyn et al.
[6][7][8]

Engineering Adaptation concerns
to extend an existing HERA-
based [23] Web application.

Medium Not specified Applies aspect-oriented
techniques to add Adaptation
concerns in a high-level
specification and separate from
the regular Web process.

Partial

A4

Zimmermann &
Vanderheiden
[53]

Introduce a process model for
Accessibility design that includes
well-known software engineering
tools.

High Generic Develops Personas to support
Accessibility requirements and
links them to Accessibility
guidelines and checkpoints for
conformance testing."

Full

A5

Moreno et al.
[29][30]

Introduce AWA module that is a
domain-specific metamodel of the
Web Accessibility domain.

High WCAG

(1.0) (2.0)

Identifies meta-objects following
the standard WCAG.

Full

Ours

Martin et al.

Early engineering of Accessibility
concerns within a Web
development process.

High WCAG

(1.0) (2.0)

Models Accessibility as an
aspect-oriented concern moving
from abstract to concrete
architectural views.

Full

6.2 Discussion

At this point we are ready to evaluate the six approaches in accordance with the

characteristics defined by our evaluation framework. To make more understandable our

explanation, we refer to the approaches as A1 [35], A2 [9], A3 [6][7][8], A4 [53], A5

[29][30] and Ours.

128

Accessibility criteria. Table 6.1 shows the resultant evaluation of the Accessibility

criteria applied to the six approaches. As we can see, A3 is the only one that has a

“medium” score at the purpose commitment column. We evaluate its grade of

commitment to Accessibility with a “medium” score because when analyzing its

purpose statement, the approach is not focused on the Accessibility concern, but on a

wide range of adaptation concerns --i.e. omnipresence, device independence,

personalization, localization, privacy, etc.

Accordingly to the fact stated above at the purpose commitment column, we set A3

assessment column as “not specified”, because the intent of this approach does not

make any reference to a particularly Accessibility conformance criteria. On the other

hand and since Accessibility is the main intent of A1, A2, A4, A5 and Ours, we set all

the approaches’ purpose commitment with a “high” score. A2 applies the W3C WCAG

1.0 for Accessibility conformance, and for that reason we set the approach’s assessment

column with the “WCAG 1.0” option. We set A1 assessment column with “other”

because this approach applies its own practice to assess Accessibility instead of using a

World-Wide reference guideline. A1 uses the DANTE tool [52] to extract visual objects

from the page that support navigation. DANTE annotates the objects based on the Web

Authoring for Accessibility (WAfA)53 travel ontology. We set A4 assessment column

with “generic” because this approach focuses on accessible design by using scenarios

and guidelines, where “guidelines” means Accessibility standards or guidelines that

contain interoperability techniques and heuristics for accessible design [52]. Finally, we

set A5 and Ours assessment column with “WCAG 1.0 and 2.0”. Both approaches

originally were conceived to work with WCAG 1.0 checkpoints, but in [29], A5 shows

how the proposal can work with WCAG 2.0. Also, we have already finished the

migration of Ours to work with the W3C WCAG 2.0 success criteria.

At the treatment completeness column, A2 and A3 are the only ones that have “partial”

scores but for different reasons. A2 aims to ensure an accessible Web page (or site)

during a Web composition process that is managed by an authoring tool. We set a

“partial” score at the treatment completeness column because the main focus of A2 is

not placed on design issues but on evaluation to guarantee that no kind of new

53 Web Authoring for Accessibility (WAfA) at http://augmented.man.ac.uk/ontologies/wafa.owl

129

Accessibility barriers can be introduced during a Web composition process. On the

other hand, A3 completely illustrates how adaptation concerns can be added to an

existing Hera-based Web application at the design level using aspect-oriented

techniques. Despite to this fact, we also set a “partial” score for A3 at the treatment

completeness column because the approach is not focused on adding Accessibility

concerns. For A1, A4, A5 and Ours, the treatment completeness column is set with

“full” scores and this is because these methods allow in different ways, early integration

of the Accessibility in the design process. For example, A1 takes the WSDM design

models as inputs --i.e. conceptual, navigation and implementation, and generates a set

of annotations to improve Accessibility for visually impaired users. A4 defines a new

way to take advantage of use cases, scenarios, test cases, personas, guidelines and

checkpoints for Accessibility purposes during a design project employing a use case

driven methodology. A5 follows the standard WCAG to model concepts and their

relationships for AWA-Metamodel at the Compute Independent Model (CIM) of the

MDA framework. Finally, Ours focuses on Accessibility requirements early taking

advantages of applying AOSD principles to handle them properly as concerns during a

Web development process.

Design criteria. Table 6.2 shows the resultant evaluation of the Design criteria. As

we can see, we set the paradigm column for A1, A3, A5 and Ours as “main within

MDSD” because these approaches show commitment and are fully identified with a

particular paradigm to deal with Accessibility at design within different MDWE

approaches. For example, at A1 the DANTE [52] annotation process uses a rule-based

mapping model as a foundation paradigm to drive the authoring and mobility

Accessibility annotations within WSDM [13]. A5 applies the MDA paradigm to define

a domain-specific metamodel for Accessibility within the OOWS Navigational Model

[18]. A3 and Ours apply consistently the AOSD paradigm when focusing on solving

adaptation and Accessibility concerns, respectively. A3 adds aspect-oriented adaptation

engineering to elements of the HERA Application Model [23], while Ours exploits the

modeling capabilities of OOHDM Interface Models [36] to inject aspect-oriented

Accessibility concerns identified at requirements elicitation. In the cases of A2 and A4,

we set their paradigm column as “other” because they implement more than one

130

paradigm to deal with Accessibility. A2 applies a rule-based model as a foundation

paradigm to drive the conditions under an accessible composition process takes place.

But also, A2 proposes the Service-Oriented paradigm when using the Web Composition

Service Linking System (WSLS) [20] as the authoring tool which enables the process of

generating new and accessible Web content. Finally, A4 defines itself like tailored for

design project employing a use-case driven methodology, so we say that A4 follows the

Objet-Oriented paradigm but combined with a user profile-based technique called

“Personas” [53].
Table 6.2: Design Criteria applied to the six approaches

DESIGN CRITERIA

Approach Paradigm Model Technique

Description Completeness Description / Name Support

A1

Plessers et al.
[35]

Main
Within MDSD

Indentifies the interface elements,
which may represent Accessibility
barriers for visually impaired users, and
annotates these interface elements
with the semantic annotations.

Full Yes
Mapping rules established from
the relationship between the
concepts in the WSDM ontology
and DANTE’s WAfA ontology.

High

A2

Centeno et al.
[9]

Other Works on compositions, which are
made of accessible chunks of HTML
code, and evaluates these
compositions with the compliance
rules.

Partial Yes
Compliance rules established for
Web compositions and formalized
with W3C standards (XPath and
XQuery expressions).

Medium

A3

Casteleyn et al.
[6][7][8]

Main
within MDSD

Selects the elements (units, attributes,
relationships, etc.) from an HERA
Application Model and injects these
elements with the required Adaptation
concerns.

Partial Yes
A domain specific language,
baptized SEAL, which is custom-
made to provide Adaptation
support (through a set of
constructs for aspects
specification) in the context of
Hera-S.

Medium

A4

Zimmermann &
Vanderheiden
[53]

Other Models primary and secondary
Personas to drive the user interface
design for each use case.

Partial No

A5

Moreno et al.
[29][30]

Main
within MDSD

Defines several constructs in UML
metamodel (MOF) to support the
abstraction of Web Accessibility
concepts based on WCAG standards.

Full No

Ours

Martin et al.

Main
within MDSD

Identifies Accessibility concerns in Web
application requirements and maps
them to widgets from abstract and
concrete interface models using aspect
orientation to meet the WCAG
standards.

Full Yes
Three conceptual tools:
! UID with Integration Points,
! Association Tables, and
! SIG template for Accessibility
that working together manage
Accessibility concerns in an
aspect-oriented manner.

High

131

Albeit for different reasons, A2, A3 and A4 have “partial” scores at the model

completeness column. A2 is focused on formalizing the Accessibility conditions to be

met by a Web composition of prewritten accessible chunks of Web pages, usually called

“snippets”. The approach proposes a set of Accessibility extra conditions for a range of

possible Web compositions given a pair of accessible HTML snippets. We set a

“partial” score for A2 at the model completeness column because the approach works

over coarse-grained interface elements (existing accessible chunks composed of fine-

grained elements as the raw material of the Web composition process) and, as a

consequence, A2 focus its design effort on the evaluation over these coarse-grained

elements. Also, it is a fact that the Service-Oriented paradigm is not inherent of the

basic model (which is rule-based) but of the WSLS [20] proposed by the approach as

the Accessibility enabled authoring tool for the model’s implementation. A3 proposes a

general model to extend an application with new functionality, considered as adaptation

concerns, without having to redesign the entire application. We set a “partial” score for

A3 at the model completeness column because the approach is focused on showing how

the transformations required by an adaption concern can be specified independently

from the original presentation level of a Web application using a generic transcoding

tool. Therefore the model is not concerned on a detailed representation of the interface

elements for an accessible design, but on showing how high-level support for adaptation

specifications can be realized applying aspect-oriented techniques. A4 proposes a

method that draws from the work on Accessibility guidelines and combines them with

existing Object-Oriented techniques in software development. The approach encourages

the early capture of Accessibility requirements using use cases, personas, scenarios and

guidelines, and promotes manual/automatic testing based on test cases and Accessibility

checkpoints (derived from guidelines) and expert reviews. In this case we set a “partial”

score for A4 at the model completeness column because the proposed model does not

represent these requirements into accessible interface elements at later stages of design.

On the other hand, we set “full” scores for A1, A4 and Ours at the model completeness

column. We set a “full” score for A1 at the model completeness column because the

approach uses the DANTE’s WAfA ontology to manage Accessibility of elementary

interface elements for visually impaired users. The proposed model for the

transformation process consists of two steps based on “authoring” and “mobility”

132

concepts and takes also into account the context of the journey --i.e. the purpose of the

user’s navigation. The conceptual knowledge captured at the WSDM design process is

exploited by the model during the transformation because it provides mapping rules

between modeling concepts in the WSDM ontology and the authoring concepts form

WAfA ontology. A4 defines several meta-objects in MOF54 to support the abstraction

of Web Accessibility concepts and their relationships based on WCAG standards.

Although A4 focuses its efforts on the meta-model, we set a “full” score for A4 model

completeness column because the concepts provided by the approach can become

concrete interface elements at the Platform Specific Model (PSM) for the MDA

development process. Finally, we set a “full” score for Ours at the model completeness

column because from the very beginning of the development process the approach

focuses on identifying Accessibility requirements and managing them as AOSD

concerns, consistently through abstract and concrete widgets of the OOHDM interface

models. As a result of this proposal, the approach adds aspect-oriented Accessibility

concerns early since requirement elicitation are weaved together using specialized

techniques (for a thorough discussion on AOSD principles see [2][28]).

At the techniques support column, A4 and A5 do not propose any proprietary technique

to complement themselves, since they apply existing design tools of software

engineering and concepts from the MDA framework, respectively. As we can see at

Table 6.2, A2 and A3 have “partial” scores at the technique support column. A2 offers a

rule-based technique for a safe compound process delivering an accessible Web page

from WCAG point of view. A2 has a “medium” score at the technique support column

because the proposed technique is close to implementation and not focused on giving

support to Accessibility design issues. Although the fact that A3 provides a domain

specific language called SEAL55, we set a “medium” score for A3 at the technique

support column because the purpose of this proprietary custom-made language is to

enrich the design level for adaptation support and not to reinforce the Accessibility

54 OMG-MOF The Model-Object Facility at http://www.omg.org/mof/

55 SEmantics-based Aspect-oriented Adaptation Language (SEAL) at

http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf

133

treatment. A1 and Ours have “high” scores at the technique support column. A1

provides mapping rules between the concepts in the WSDM ontology and DANTE’s

WAfA ontology which enable enriching the design level to reinforce the Accessibility

propose by taking the WSDM conceptual models as input and annotating them with

authoring and mobility concepts. Finally, Ours provides the User-Interaction Diagram

(UID) with Integration Points and the Softgoal Interdependency Graph (SIG) template

for Accessibility linked by the Association Tables. We set a “high” score for Ours at the

technique support column because these conceptual tools where specially developed to

provide aspect-oriented support at the design level for Accessibility purpose.

Table 6.3: Other Criteria applied to the six approaches

OTHER CRITERIA

Approach Background approaches Supporting tool

Name Purpose

A1

Plessers et al.
[35]

DANTE
 [52]

Used to perform the semantic
annotation process of Web
pages.

Yes
Implements WSDM-DANTE mapping
rules to automatically generate
semantic annotations.

A2

Centeno et al.
[9]

WSLS: A Service-based System for
Reuse-Oriented Web engineering
 [20]

Used as the Accessibility
enabled authoring tool.

Yes
Shows for some selected rules (based
on automatable WCAG checkpoints)
how WSLS can afford compliance to
these rules.

A3

Casteleyn et al.
[6][7][8]

Component-based AMACONT
framework
 [15][16] [32]

Used as the first
implementation of a
presentation engine for
HERA-S.

Yes
Integrates SEAL in HydraGen system,
which is the latest implementation
generation tool for Hera-S.

A4

Zimmermann &
Vanderheiden
[53]

Use Cases and Personas Applied to model user profiles
linked to their Accessibility
requirements.

No

A5

Moreno et al.
[29][30]

MDA framework Applied to support AWA for
MDA development process.

Yes
Provides AWA-MetamodelEditor for
graphical support to AWA-Metamodel.

Ours

Martin et al.

User Interaction Diagram (UID) for
modeling user-system interaction
[43]

Softgoal Interdependency Graph (SIG)
for modeling non-functional
requirements (NFRs)
[11][12]

Extended for supporting
Accessibility requirements.

Yes
Provides a supporting tool to discover
crosscutting concerns and apply
aspects at the Abstract User Interface
model.

Other criteria. Table 6.3 shows the resultant evaluation of the Other criteria. At the

background approach column, we can see that all the proposals have previous works

134

and these works are fundamental pieces to the operation of the approaches. A1 founds

its work on DANTE’s WAfA ontology [52] that is applied to enhance the mobility of

visually impaired Web users by providing screen readers with extra knowledge to better

facilitate the audio presentation of the Web page. A2 uses the WSLS system [20], which

is a component-based system applying the service-oriented paradigm to compound,

discover and reuse services. The GAC transcoder [16] provided by the ANACONT

framework [15] is foundational to A3, since this approach exploits a transcoding tool

for making Web application adaptive. A4 applies uses cases and scenarios extended

with the “personas” profiling technique for describing Accessibility interfaces’ needs

and other usage requirements of users with disabilities.

As we can see in Table 6.3, A4 is the only one that has “No” at the supporting tool

column, while A1, A2, A3, A5 and Ours offer at least some kind of executable

implementation of their proposals. A1 presented a combined approach where the

mapping rules between the WSDM [13] concepts and the DANTE [52] concepts are

implemented. This implementation allows about +/- 70% of the DANTE concepts

annotations to be generated automatically without any extra effort from designers. A2

extends the WSLS system [20] to afford compliance to a set of selected rules that

guarantee accessible Web composition. The tool seems to give already some promising

results since the fact that the WSLS framework is implemented on the top of the .NET

framework and gives support to XML technologies. A3 offers a latest implementation

of the approach generation tool for HERA-S that integrates SEAL in HydraGen

engine56 (an implementation generation tool for Hera-S developed externally by the

University of Eindhoven), to show their adaptation engineering perspective applying

pointcuts and advices expressions. A5 provides the AWA-MetamodelEditor for

graphical metamodel support that is based on the Graphical Modeling Framework

(GMF)57. Finally, Ours provides a tool at Stage 3 of the proposed development process

that helps designer and developers to produce accessible interfaces by moving from

abstract to concrete architectural views using aspect-orientation --i.e. discovering

56 Hydragen: An implementation of Hera-S at http://wwwis.win.tue.nl/~ksluijs/material/Singh-Master-

Thesis-2007.pdf

57 The Eclipse Graphical Modeling Project (GMP) at http://www.eclipse.org/modeling/gmp/

135

crosscutting concerns and applying aspects at the abstract user interface model from

knowledge about Accessibility obtained in previous stages. Related to Ours, it is also

important to highlight that as we have already indicated in Chapter 4 and later, we have

showed with the case study in Chapter 5, there are cases in which we can develop

artifacts once and then reused them, as we required. The reuse capabilities of Ours is a

main advantage, because propitiates the supporting tool to have a design artifacts

repository. For example, and as we have showed in Figures 5.3, 5.4 and 5.5, the

Accessibility softgoal for the HTML image element can be modeled once and then

applied for the SIG instantiation any time is required.

Figure 6.2: Scoring the six approaches for the Accessibility Criteria

To summarize the results of the six approaches’ comparison, we score the topics related

to the Accessibility and Design criteria from 0 to 5, as follows: (i) the scores “high” and

“full” match to 5, while the scores “medium” and “partial” match to 2.5; (ii) at the

assessment topic, the option “WCAG 1.0 and 2.0” matches to 5, the option “WCAG

1.0” matches to 4, the option “generic” and “other” match to 2.5, and the option “not

specified” matches to 0; and finally (iii) at the paradigm topic, the option “main within

MDSD” matches to 5, while the option “other” matches to 2.5. Figures 6.2 and 6.3

show the scoring of the six approaches for the Accessibility and Design criteria,

respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Treatment (Completeness)

Assessment

Purpose (Commitment)

136

Figure 6.3: Scoring the six approaches for the Design Criteria

To complete this summary, Figure 6.4 shows the average of scores for the six

approaches by Criteria. We should note that for the Other Criteria, we score only the

supporting tool topic by simply matching the options “yes” and “no” to 5 and 0,

respectively.

Figure 6.4: The average of scores for the six approaches by Criteria

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Technique (Support)

Model (Completeness)

Paradigm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Accessibility Criteria

Design Criteria

Other Criteria

137

6.3 Focusing on Ours

We dedicate this Section to provide some extra discussion about our proposal. As we

already said, Ours allows developers to produce accessible interfaces by moving from

abstract to concrete architectural views using aspect-orientation. This is a main

advantage, since allows developers to keep in mind a clear picture of how these

architectural views relate each other during the development process, while preserving

their own properties: (i) the abstract view ensures clean designs --i.e. free of

crosscutting symptoms, which are separated and modeled as aspects for their

modularization; while (ii) the concrete view provides the implementation of these

designs, but as a consequence of the weaving process that takes place at the code level.

Thus, Ours uses aspect-orientation to propose a smooth and open transition between

models (abstract and concrete views), since this transition allows the independence of

the way clean designs will be implemented into accessible code.

At this point, we revisit the argument, which we stated when applying Ours in Section

5.2, to the case study in Section 5.1, about alternatives in the navigation path. As Figure

5.1 (d) shows, the case study offers the student two pages to help to the login process in

Figure 5.1 (c). We highlighted that browsing these pages is optional and therefore, if

the student follows these help links, his/her decision will produce a different navigation

path. As we said before, we focus on the UI models because, undoubtedly, is at the UI

where Accessibility barrier finally show, but notice that this is one of those cases in

which navigational issues can affect Accessibility. This is the reason why, to improve

the user’s experience when browsing to achieve the desired functionality, we have to

consider the UI designs for each alternative in the navigation path we have defined as

important for the task’s functionality. This means that if we provide the user with

alternatives in the navigation path, they must be explored and modeled before properly,

because they can be relevant to Accessibility and therefore to the success of the user’s

task. This is an advantage of Ours, because although Ours is focused on UI models, also

allows to explore navigational models to avoid unexplored optional browsing that can

lead to user interfaces which were not considered initially.

138

As Figure 6.5 shows, this is possible mainly because of two reasons. In first place, the

UID is the conceptual tool used by OOHDM to state transformations between Web

application requirements (use case model) and the conceptual, navigational and

interface models. As Figure 6.5 shows, this is the same principle that Ours propitiates

between Web applications requirements and accessible UI models. Ours uses two

conceptual tools (the UID with integration points and SIG template for Accessibility),

with which the interaction between OOHDM models links and reinforces Accessibility

needs.

Figure 6.5: Ours within MDSD paradigm

In second place, since Ours is conceived within the MDSD paradigm, models are

related to each other and as a consequence of an iterative and incremental development

process. Thus, Ours allows: (i) going back from UI models to navigational models to

look for alternatives in the navigation path, (ii) assessing the need and relevance of

these alternatives to the functionality under develop, and (iii) going forward from

navigational models to UI models to check the Accessibility of the UI related to these

alternatives.

6.3.1 Migrating to WCAG 2.0

We have already given part of our motivation for applying WCAG 1.0 [45] instead of

WCAG 2.0 [46] in Section 3.6.

In first place, and to avoid linking the selection of the WCAG 1.0 only to issues related

to the adoption rate in the world, it seems appropriate to highlight that as we are

concerned with Accessibility, we have a few quibbles about the decision made on the

usefulness of certain checkpoints in the WCAG 2.0 document.

3

WEB APPLICATION REQUIREMENTS

CONCEPTUAL DESIGN NAVIGATIONAL DESIGN
USER INTERFACE DESIGN

ABSTRACT MODEL CONCRETE MODEL

UID with integration points + SIG template for Accessibility

1

2

139

Table 6.1: Association Table for the HTML Control Elements Group using WCAG 2.0

For example, WCAG 1.0 provides the checkpoint 12.3 which basically states that the

information should be grouped to divide large blocks of information into more

manageable groups and this is especially true for the HTML related controls element (a

set of HTML text field elements). The WCAG 2.0 version from January 2006 was also

clear on this point, providing the criterion 4.1.3, which basically says that the label of

each user interface control in the Web content that accepts input from the user can be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the Accessibility community13 when providing mappings between the WCAG 1.0

checkpoints onto the WCAG 2.0 success criteria.

Table 5: Association Table for the HTML Control Group using WCAG 2.0

!"#$%&' ()&(*(+,'

-./+$&"'''
0!1"&2!%&'

-./+$&"3'''

4&5*''
$*$5$)&"''
'0%()%2$&$'
'-./+$&"3'''

-%!+'678'"9%%$""'%2.&$2.!''

!)/'&4$.2'''
$:$"'(;'%();(25!)%$<''''

='!'>'='!!'>'(2''='!!!'>'

/$".+)'/$%.".()'
%*!""''

!"#$%"&'%(''
9"$2?!##*.%!&.()'

.)&$2!%&.()'

2.4.3

[A]'
1.3.1

[A]'
4.1.2

[A]'

/?#'
'

#' /?#' /.!*(+'''0'/'3''''
#2$"$)&!&.()''0'#'3'
#2!+5!&.%'' '

I .'
&"%()&2(*

"''
9"$2'

&$%4)(*(+,'
"9##(2&'
12!)%4'

'

'

)*+,-)*).,/01)023,'
.,4.'-),3+')*56.'.,4. ' '

.,4.'01,0' .,4.01,0 ' '

1,30.,+'
78*.1839'

-),3+9,. ' '

51,+,-)*,+/01)023,'
:63.)53,7;8)7,9'

7;,7<'284')*56.'7;,7<284 '

:63.)53,'85.)8*'
:,*6'

9,3,7.':63.)53, '

1,30.,+'85.)8*9' 85.=1865 '

51,+,-)*,+/01)023,'
9)*=3,7;8)7,9 10+)8'26..8*')*56.'10+)8 '

9):53,''85.)8*'
:,*6'

9,3,7. '

I I .
"%()&2(

"''
9"$2'*!,(9&''

"9##(2&'
12!)%4'

'

)*+,-)*).,/01)023,'
.,4.-),3+')*56.'.,4. '

.,4.01,0' .,4.01,0 '

1,30.,+'
78*.1839'

-),3+9,. '

51,+,-)*,+/01)023,'
:63.)53,7;8)7,9'

7;,7<284')*56.'7;,7<284 ' '

:63.)53,'85.)8*'
:,*6'

9,3,7.':63.)53,' ' '

1,30.,+'85.)8*9' 85.=1865 '

51,+,-)*,+/01)023,'
9)*=3,7;8)7,9 10+)8'26..8*')*56.'10+)8 '

9):53,'85.)8*'
:,*6'

9,3,7. '

13 See http://www.w3.org/WAI/WCAG20/from10/comparison/; http://wipa.org.au/papers/wcag-

migration.htm; http://www.usability.com.au/resources/wcag2./

140

programmatically determined and explicitly associated with the control. Unfortunately,

success criterion 4.1.3 has been removed and WCAG 2.0 relies on success criterion

1.3.1 to cover the labeling of related controls, which is not explicit enough to ensure the

absence of this important accessibility barrier. In this sense, we fully agree with the

statement about the WCAG 2.0 on [41]: “not having any success criteria specifically

dealing with forms is certainly a mistake”.

However, aware that the new guidelines and the move to technological neutrality are

undoubtedly good, we don’t see major inconveniences to upgrade our approach to

WCAG 2.0 when necessary. As we discussed before, our approach is based on the use

of UIDs with integration points and the SIG template for Accessibility linked by

association tables. These conceptual tools are able to support the success criteria from

WCAG 2.0 instead of checkpoints from WCAG 1.0 applying some straightforward

redefinitions and adjustments. As an example, Table 7.1 shows the association table for

HTML control elements group using WCAG 2.0 success criteria. We highlight that to

realize this upgrade we use the comparison provided by W3C-WAI in [49], since there

are still some discrepancies at the Accessibility community58 when providing mappings

between the WCAG 1.0 checkpoints onto the WCAG 2.0 success criteria.

58 Examples of these comparisons at http://www.w3.org/WAI/WCAG20/from10/comparison/;

http://wipa.org.au/papers/wcag- migration.htm; http://www.usability.com.au/resources/wcag2./

141

142

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Web Engineering (WE) is essential to the development of systems that are accessible,

usable and acceptable to everybody. Accessibility relies on formulating and

promulgating principles, methods and tools of universal design in order to develop

applications that are accessible and usable by everybody. Web Engineering starts with a

perceived problem and represents a problem solving process, which aims to come up

with a model of the implementation of the proposed solution. The discipline of design

therefore provides the interface between understanding and creation, and a multitude of

acceptable solutions for designing Accessibility may exist, as we summarized in this

work. The multiplicity of feasible directions is significant, as it implies a need to choose

from among a set of potential alternatives that address different aspects of the problem

and provide different levels of solutions with regard to the users’ needs. However, as we

have already seen in Chapter 2, when we presented and applied related works, there are

not so many similar efforts for early design with the principles of Accessibility in mind.

In general, the WE proposals do not consider Accessibility as a main driver of the

process; which might hinder the identification and evaluation of relevant design

elements from early stages.

In this work, we presented a novel WE approach to conceive, design and develop

accessible Web applications using aspect-oriented concepts, which enabled us to

address Accessibility early from requirements and through design to implementation. In

Chapter 5, we used a real application example of 3 (three) level-deep navigation and 2

(two) optional anchor, to illustrate our ideas and point out the advantages of a clear

separation of concerns throughout the development life-cycle. First of all, aspect-

orientation capabilities constitute an important driver to efficiently capturing the

orthogonal properties that are typical of the Accessibility’s nature. Secondly, organizing

these properties into a model-driven approach gives us better visibility of the

components at different levels --i.e. from its conceptualization to its instantiation by

143

particular Accessibility rules. This is especially important when reasoning about the

different properties, because their complexity may be adequately addressed.

In addition, we provided explicit analysis and design techniques aiming at facilitating

the capture of early Accessibility concerns. These techniques might be combined with

traditional WE methods, which would help introduce and deploy our approach in the

industry. However, we must take into account that the inclusion of new conceptual tools

for treating Accessibility requires an extra effort for developers to get familiar with

them. In this sense, we are currently incorporating our ideas into design tools to assist

developers to design model-driven accessible Web applications. In Section 5.3, we have

introduced a supporting tool that is already developed to provide assistance for applying

the Accessibility aspects, which avoid crosscutting symptoms when applying the

Accessibility concerns prescribed by the SIGs diagrams, to user interface models

(abstract and concrete ones).

Since our proposal is strongly linked to the model-driven paradigm, we would like to

close this section, reflecting on the advantages/disadvantages of model-driven

approaches and how this issue benefits/affects our proposal. It is a fact that applying

"unified", model-driven approaches brings the benefit of having full documentation and

automatic application generation at the expense of introducing some bureaucracy into

the development process. Since our proposal suggests the early treatment of the

Accessibility concerns through models, we may still be influenced by this reality and its

disadvantages --i.e., time and cost consuming, complexity, learning effort, etc. Related

to the project team and development environment, we believe it is important to

highlight the following issues: (i) although our approach is completely documented and

self-contained within a well-kwon Web engineering approach, its application requires a

prior knowledge of the WCAG 1.0 (or 2.0) guidelines and their specific terminology;

(ii) although our approach helps to transfer Accessibility requirements, the engineering

staff members should not be ruled by ad hoc practices, or used to apply approaches,

which have not incorporated the design and documentation of the application under

development as an standard discipline. These two issues demand changes in the

development process that must be supported by the organizations. In this sense, for Web

development, quality is often considered as higher priority than time-to-market with the

144

mantra later-and-better [33] even though they mean extra time and cost consuming.

However, since the Accessibility guidelines are quite independent from the Web

application under development, there are many cases to which the same Accessibility

solution can be applied. Then, recording such recurrent situations (e.g., using patterns)

might contribute to reuse them, which supplies to reduce the development effort when

implementing our proposal. This is possible because aspects could be developed once

and be reused in different Web projects. This reinforces what we have already said in

Sections 4.1, 5.2 and 6.2 for SIGs diagrams, about how our proposal propitiates the

reuse of design artifacts.

7.2 Future Work

Considering the extensibility of our approach, it is important to highlight, that although

in this work we focused on visual disabilities, the proposal can be extended to all kinds

of disabilities as the conceptual tools we provided (the UID with integration points and

SIG template for Accessibility) are generic enough to capture Accessibility

requirements for all types of impairments. The reason why we use visual impairment is

based on the fact that ensuring Accessibility requirements for blind people, to a certain

extent, covers Accessibility requirements for other disabilities. For example, the

checkpoint 1.1 of the WCAG 1.0 establishes that text equivalents must be written to

convey all essential content; therefore ensuring compliance to checkpoint 1.1 is vital for

visually impaired users. The fact is that the absence of non-text equivalents represents a

critical Accessibility barrier for people with visual disabilities, but ensuring text-

equivalent also improves Accessibility for users with deafness, cognitive and learning

disabilities. So, we considered the treatment of visual impairments as a good starting

point.

Finally, we should further validate our proposal working with WCAG 2.0 [46] beyond

the case study, which we used in Section 5.1 to apply our Aspect-Oriented approach,

and make some comparisons between case studies that we have been applying during

the validating process. To do so, we are currently following two different but related

paths: (i) migrating the supporting tool to work with the WCAG 2.0 version of our

approach and extending the tool’s functionality to cover all the approach’s development

145

process to propitiate industry adoption and, (ii) analyzing deeply the impact of applying

our proposal on quality attributes of the resulting system, such as reuse, extensibility

and modularity, and the developing effort required when using the approach. We are

currently carrying out some guided experiments in the area of Web-based systems for

academic domains and the petroleum industry.

7.3 Publications related to this Thesis

The partial results obtained during this investigation have been published and presented

in different forums. Following, in sections 7.3.1, 7.3.2, 7.3.3 and 7.3.4, we present some

of these work ordered according to whether they correspond to Journals, Book

Chapters, International Conferences and National Conferences, respectively.

7.3.1 Journals

! (WWWJ 2010) World Wide Web: Internet and Web Information Systems

Journal59

Title: Engineering Accessible Web Applications. An Aspect-Oriented Approach

Authors: Adriana Martín, Gustavo Rossi, Alejandra Cechich, Silvia Gordillo

In: World Wide Web: Internet and Web Information Systems Journal (WWWJ)

ISBN: 978-1-59904-847-5

Volume-Number: 13 (4)

Pages: 419-440

DOI: 10.1007/s11280-010-0091-3

Abstracted/Indexed in: Academic OneFile, ACM Computing Reviews, ACM Digital Library,

Cabell's, Computer and Communication Security Abstracts, Computer Science Index, Current

Abstracts, Current Contents/Engineering, Computing and Technology, DBLP, EBSCO, EI-

Compendex, Gale, Google Scholar, INSPEC, io-port.net, Journal Citation Reports/Science Edition,

OCLC, Science Citation Index Expanded (SciSearch), SCOPUS, Summon by Serial Solutions.

Impact Factor: 1.0

59 (WWWJ 2010) at

http://www.informatik.uni-trier.de/~ley/db/journals/www/www13.html#MartinRCG10

146

7.3.2 Book Chapters

! (Book Chapter 2008) Handbook of Research on Web Information Systems

Quality60

Title: Comparing Approaches to Web Accessibility Assessment

Authors: Adriana Martín, Alejandra Cechich, Gustavo Rossi

In: Coral Calero, Mª Ángeles Moraga and Mario Piattini (Editors) Handbook of

Research on Web Information Systems Quality, 2008

ISBN13: 9781599048475 - ISBN10: 1599048477 - ISBN13: 9781599048482

Publisher: IGI Global

Chapter: XI

Pages: 181-205

DOI: 10.4018/978-1-59904-847-5.ch011

7.3.3 International Conferences

! (W4A 2011) World Wide Web 8th International Cross-Disciplinary Conference

on Web Accessibility61

Title: Accessibility at Early Stages: Insights from the Designer Perspective

Authors: Adriana Martín, Alejandra Cechich, Gustavo Rossi

In: Proceedings of 8th International Cross-Disciplinary Conference on Web

Accessibility (W4A), Hyderabad, Andhra Pradesh, India, 2011

ISBN: 978-1-4503-0476-4

Publisher: ACM

Pages: 9

DOI: 10.1145/1969289.1969302

60 (Chapter XI) at http://www.igi-global.com/bookstore/chapter.aspx?titleid=21973

61 (W4A 2011) at http://www.informatik.uni-trier.de/~ley/db/conf/w4a/w4a2011.html#MartinCR11

147

! (ICSEA 2010) 5th International Conference on Software Engineering

Advances62

Title: Supporting an Aspect-Oriented Approach to Web Accessibility Design

Authors: Adriana Martín, Rafaela Mazalú, Alejandra Cechich

In: Proceedings of 5th International Conference on Software Engineering Advances

(ICSEA), Nice, France, 2010

ISBN: 978-0-7695-4144-0

Publisher: IEEE

Pages: 20-25

DOI: 10.1109/ICSEA.2010.10

! (LA-WEB 2007) Fifth Latin American Web Congress63

Title: A Three-Layered Approach to Model Web Accessibility for Blind Users

Authors: Adriana Martín, Alejandra Cechich, Silvia Gordillo, Gustavo Rossi

In: Proceedings of 5th Latin American Web Congress (LA-WEB), Santiago de

Chile, Chile, 2007

ISBN: 0-7695-3008-7

Publisher: IEEE

Pages: 76-83

DOI: 10.1109/LA-WEB.2007.56

7.3.4 National Conferences

! (ASSE 2011) 12th Argentine Symposium on Software Engineering64

Title: AO -WAD: A Supporting Tool to Aspect-Oriented Web Accessibility Design

Authors: Rafaela Mazalú, Fabián Huenuman, Adriana Martín, Alejandra Cechich

In: Proceedings of 12th Argentine Symposium on Software Engineering (ASSE),

Córdoba, Argentina, 2011

62 (ICSEA 2010) at http://www.informatik.uni-trier.de/~ley/db/conf/icsea/icsea2010.html#MartinMC10

63 (LA-WEB 2007) at

http://www.informatik.uni-trier.de/~ley/db/conf/la-web/la-web2007.html#MartinCGR07

64 (ASSE 2011) at http://www.40jaiio.org.ar/node/85

148

ISBN: 1850-2792

Pages: 108-119

! (CACIC 2009) XV Congreso Argentino en Ciencias de la Computación65

Title: Hacia una Herramienta de Soporte para el Modelado Web con

Accesibilidad

Authors: Rafaela Mazalu, Adriana Martín, Alejandra Cechich

In: Proceedings of XV Congreso Argentino en Ciencias de la Computación

(CACIC), San Salvador de Jujuy, Jujuy, Argentina, 2009

ISBN: 978-897-24068-4-1

Pages: 663-672

7.4 Other related Publications

Following, in sections 7.4.1 and 7.4.2, we present other related work ordered according

to whether they correspond to International Conferences and National Conferences,

respectively.

7.4.1 International Conferences

! (CIbSE 2010) XIII Congreso Americano en “Software Engineering66

Title: Diseño de Interfaces Guiado por Restricciones de Accesibilidad Web

Authors: Brenda Bustos, Adriana Martín, Alejandra Cechich

In: Proceedings of XIII Congreso Americano en “Software Engineering” (CIbSE),

Universidad del Azuay, Cuenca, Ecuador, 2010

Pages: 229-242

65 (CACIC 2009) http://redunci.info.unlp.edu.ar/files/indice_Cacic_2009.pdf

66 (CIbSE 2010) at http://www.uazuay.edu.ec/cibse/2_sessions.php

149

! (LA-WEB 2005) Third Latin American Web Congress67

Title: A Model-Driven Reengineering Approach to Web Site Personalization

Authors: Adriana Martín, Alejandra Cechich

In: Proceedings of 3rd Latin American Web Congress (LA-WEB), Buenos Aires,

Argentina, 2005

ISBN: 0-7695-2471-0

Publisher: IEEE

Pages: 14-22

DOI: 10.1109/LAWEB.2005.5

7.4.2 National Conferences

! (CACIC 2008) XIV Congreso Argentino en Ciencias de la Computación

Title: Extendiendo MVC para Diseñar Interfaces de Usuario Accesibles

Authors: Brenda Bustos Torres, Adriana Martín, Alejandra Cechich

In: Proceedings of XIV Congreso Argentino en Ciencias de la Computación

(CACIC), Chilecito, La Rioja, Argentina, 2008

ISBN: 978-987-24611-0-2

Pages: 1163-1174

67 (LA-WEB 2005) at

http://www.informatik.uni-trier.de/~ley/db/conf/la-web/la-web2005.html#MartinC05

150

151

APPENDIX I

Web Content Accessibility Guidelines (WCAG) 1.0

W3C Recommendation 5-May-1999
This version:

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
(plain text, PostScript, PDF, gzip tar file of HTML, zip archive of HTML)

Latest version:
http://www.w3.org/TR/WAI-WEBCONTENT

Previous version:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324

Editors:
Wendy Chisholm, Trace R & D Center, University of Wisconsin -- Madison Gregg
Vanderheiden, Trace R & D Center, University of Wisconsin -- Madison Ian Jacobs,
W3C

Copyright W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
These guidelines explain how to make Web content [p. 26] accessible to people with
disabilities. The guidelines are intended for all Web content developers [p. 26] (page
authors and site designers) and for developers of authoring tools [p. 25] . The primary
goal of these guidelines is to promote accessibility. However, following them will also
make Web content more available to all users, whatever user agent [p. 30] they are
using (e.g., desktop browser, voice browser, mobile phone, automobile-based personal
computer, etc.) or constraints they may be operating under (e.g., noisy surroundings,
under- or over-illuminated rooms, in a hands-free environment, etc.). Following these
guidelines will also help people find information on the Web more quickly. These
guidelines do not discourage content developers from using images, video, etc., but
rather explain how to make multimedia content more accessible to a wide audience.

This is a reference document for accessibility principles and design ideas. Some of
the strategies discussed in this document address certain Web internationalization and
mobile access concerns. However, this document focuses on accessibility and does
not fully address the related concerns of other W3C Activities. Please consult the W3C
Mobile Access Activity home page and the W3C Internationalization Activity home
page for more information.

This document is meant to be stable and therefore does not provide specific
information about browser support for different technologies as that information

Web Content Accessibility Guidelines 1.0
W3C Recommendation 5-May-1999
This version:

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
(plain text, PostScript, PDF, gzip tar file of HTML, zip archive of HTML)

Latest version:
http://www.w3.org/TR/WAI-WEBCONTENT

Previous version:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324

Editors:
Wendy Chisholm, Trace R & D Center, University of Wisconsin -- Madison
Gregg Vanderheiden, Trace R & D Center, University of Wisconsin -- Madison
Ian Jacobs, W3C

Copyright W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract
These guidelines explain how to make Web content [p. 26] accessible to people with
disabilities. The guidelines are intended for all Web content developers [p. 26] (page
authors and site designers) and for developers of authoring tools [p. 25] . The
primary goal of these guidelines is to promote accessibility. However, following them
will also make Web content more available to all users, whatever user agent [p. 30]
they are using (e.g., desktop browser, voice browser, mobile phone,
automobile-based personal computer, etc.) or constraints they may be operating
under (e.g., noisy surroundings, under- or over-illuminated rooms, in a hands-free
environment, etc.). Following these guidelines will also help people find information
on the Web more quickly. These guidelines do not discourage content developers
from using images, video, etc., but rather explain how to make multimedia content
more accessible to a wide audience.

This is a reference document for accessibility principles and design ideas. Some
of the strategies discussed in this document address certain Web internationalization
and mobile access concerns. However, this document focuses on accessibility and
does not fully address the related concerns of other W3C Activities. Please consult
the W3C Mobile Access Activity home page and the W3C Internationalization
Activity home page for more information.

1

Web Content Accessibility Guidelines 1.0

152

changes rapidly. Instead, the Web Accessibility Initiative (WAI) Web site provides such
information (refer to [WAI-UA-SUPPORT] [p. 33]).

This document includes an appendix that organizes all of the checkpoints [p. 7] by
topic and priority. The checkpoints in the appendix link to their definitions in the current
document. The topics identified in the appendix include images, multimedia, tables,
frames, forms, and scripts. The appendix is available as either a tabular summary of
checkpoints or as a simple list of checkpoints.

A separate document, entitled "Techniques for Web Content Accessibility
Guidelines 1.0" ([TECHNIQUES] [p. 33]), explains how to implement the checkpoints
defined in the current document. The Techniques Document discusses each
checkpoint in more detail and provides examples using the Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS), Synchronized Multimedia
Integration Language (SMIL), and the Mathematical Markup Language (MathML). The
Techniques Document also includes techniques for document validation and testing,
and an index of HTML elements and attributes (and which techniques use them). The
Techniques Document has been designed to track changes in technology and is
expected to be updated more frequently than the current document. Note. Not all
browsers or multimedia tools may support the features described in the guidelines. In
particular, new features of HTML 4.0 or CSS 1 or CSS 2 may not be supported.

"Web Content Accessibility Guidelines 1.0" is part of a series of accessibility
guidelines published by the Web Accessibility Initiative. The series also includes User
Agent Accessibility Guidelines ([WAI-USERAGENT] [p. 33]) and Authoring Tool
Accessibility Guidelines ([WAI-AUTOOLS] [p. 33]).

Status of this document
This document has been reviewed by W3C Members and other interested parties and
has been endorsed by the Director as a W3C Recommendation. It is a stable document
and may be used as reference material or cited as a normative reference from another
documents. W3Cʼs role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment. This enhances the
functionality and universality of the Web.

The English version of this specification is the only normative version. However, for
translations in other languages see http://www.w3.org/WAI/GL/WAI-WEBCONTENT-
TRANSLATIONS.

The list of known errors in this document is available at
http://www.w3.org/WAI/GL/WAI-WEBCONTENT-ERRATA. Please report errors in this
document to wai-wcag-editor@w3.org.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

This document has been produced as part of the W3C Web Accessibility Initiative.
The goal of the Web Content Guidelines Working Group is discussed in the Working
Group charter.

153

1. Introduction
For those unfamiliar with accessibility issues pertaining to Web page design, consider
that many users may be operating in contexts very different from your own:
• They may not be able to see, hear, move, or may not be able to process some

types of information easily or at all.
• They may have difficulty reading or comprehending text.
• They may not have or be able to use a keyboard or mouse.
• They may have a text-only screen, a small screen, or a slow Internet connection.
• They may not speak or understand fluently the language in which the document is

written.
• They may be in a situation where their eyes, ears, or hands are busy or interfered

with (e.g., driving to work, working in a loud environment, etc.).
• They may have an early version of a browser, a different browser entirely, a voice

browser, or a different operating system.
Content developers must consider these different situations during page design.

While there are several situations to consider, each accessible design choice generally
benefits several disability groups at once and the Web community as a whole. For
example, by using style sheets [p. 29] to control font styles and eliminating the FONT
element, HTML authors will have more control over their pages, make those pages
more accessible to people with low vision, and by sharing the style sheets, will often
shorten page download times for all users.

The guidelines discuss accessibility issues and provide accessible design
solutions. They address typical scenarios (similar to the font style example) that may
pose problems for users with certain disabilities. For example, the first guideline [p. 10]
explains how content developers can make images accessible. Some users may not
be able to see images, others may use text-based browsers that do not support
images, while others may have turned off support for images (e.g., due to a slow
Internet connection). The guidelines do not suggest avoiding images as a way to
improve accessibility. Instead, they explain that providing a text equivalent [p. 27] of the
image will make it accessible.

How does a text equivalent make the image accessible? Both words in "text
equivalent" are important:
• Text content can be presented to the user as synthesized speech, braille, and

visually-displayed text. Each of these three mechanisms uses a different sense --
ears for synthesized speech, tactile for braille, and eyes for visually-displayed text
-- making the information accessible to groups representing a variety of sensory
and other disabilities.

• In order to be useful, the text must convey the same function or purpose as the
image. For example, consider a text equivalent for a photographic image of the
Earth as seen from outer space. If the purpose of the image is mostly that of
decoration, then the text "Photograph of the Earth as seen from outer space"
might fulfill the necessary function. If the purpose of the photograph is to illustrate
specific information about world geography, then the text equivalent should
convey that information. If the photograph has been designed to tell the user to
select the image (e.g., by clicking on it) for information about the earth, equivalent
text would be "Information about the Earth". Thus, if the text conveys the same
function or purpose for the user with a disability as the image does for other
users, then it can be considered a text equivalent.

154

Note that, in addition to benefitting users with disabilities, text equivalents can help
all users find pages more quickly, since search robots can use the text when indexing
the pages.

While Web content developers must provide text equivalents for images and other
multimedia content, it is the responsibility of user agents [p. 30] (e.g., browsers and
assistive technologies such as screen readers [p. 29], braille displays [p. 26] , etc.) to
present the information to the user.

Non-text equivalents of text (e.g., icons, pre-recorded speech, or a video of a
person translating the text into sign language) can make documents accessible to
people who may have difficulty accessing written text, including many individuals with
cognitive disabilities, learning disabilities, and deafness. Non-text equivalents of text
can also be helpful to non-readers. An auditory description [p. 28] is an example of a
non-text equivalent of visual information. An auditory description of a multimedia
presentationʼs visual track benefits people who cannot see the visual information.

2. Themes of Accessible Design
The guidelines address two general themes: ensuring graceful transformation, and
making content understandable and navigable.

2.1 Ensuring Graceful Transformation
By following these guidelines, content developers can create pages that transform
gracefully. Pages that transform gracefully remain accessible despite any of the
constraints described in the introduction [p. 5] , including physical, sensory, and
cognitive disabilities, work constraints, and technological barriers. Here are some keys
to designing pages that transform gracefully:
• Separate structure from presentation (refer to the difference between content,

structure, and presentation [p. 26]).
• Provide text (including text equivalents [p. 27]). Text can be rendered in ways that

are available to almost all browsing devices and accessible to almost all users.
• Create documents that work even if the user cannot see and/or hear. Provide

information that serves the same purpose or function as audio or video in ways
suited to alternate sensory channels as well. This does not mean creating a
prerecorded audio version of an entire site to make it accessible to users who are
blind. Users who are blind can use screen reader [p. 29] technology to render all
text information in a page.

• Create documents that do not rely on one type of hardware. Pages should be
usable by people without mice, with small screens, low resolution screens, black
and white screens, no screens, with only voice or text output, etc.

The theme of graceful transformation is addressed primarily by guidelines 1 to 11.

2.2 Making Content Understandable and Navigable
Content developers should make content understandable and navigable. This includes
not only making the language clear and simple, but also providing understandable
mechanisms for navigating within and between pages. Providing navigation tools and
orientation information in pages will maximize accessibility and usability. Not all users
can make use of visual clues such as image maps, proportional scroll bars, side-by-

155

side frames, or graphics that guide sighted users of graphical desktop browsers. Users
also lose contextual information when they can only view a portion of a page, either
because they are accessing the page one word at a time (speech synthesis or braille
display [p. 26]), or one section at a time (small display, or a magnified display). Without
orientation information, users may not be able to understand very large tables, lists,
menus, etc.

The theme of making content understandable and navigable is addressed primarily
in guidelines 12 to 14.

3. How the Guidelines are Organized
This document includes fourteen guidelines, or general principles of accessible design.
Each guideline includes:
• The guideline number.
• The statement of the guideline.
• Guideline navigation links. Three links allow navigation to the next guideline (right

arrow icon), the previous guideline (left arrow icon), or the current guidelineʼs
position in the table of contents (up arrow icon).

• The rationale behind the guideline and some groups of users who benefit from it.
• A list of checkpoint definitions.

The checkpoint definitions in each guideline explain how the guideline applies in
typical content development scenarios. Each checkpoint definition includes:
• The checkpoint number.
• The statement of the checkpoint.
• The priority of the checkpoint. Priority 1 checkpoints are highlighted through the

use of style sheets.
• Optional informative notes, clarifying examples, and cross-references to related

guidelines or checkpoints.
• A link to a section of the Techniques Document ([TECHNIQUES] [p. 33]) where

implementations and examples of the checkpoint are discussed.
Each checkpoint is intended to be specific enough so that someone reviewing a

page or site may verify that the checkpoint has been satisfied.

3.1 Document conventions
The following editorial conventions are used throughout this document:
• Element names are in uppercase letters.
• Attribute names are quoted in lowercase letters.
• Links to definitions are highlighted through the use of style sheets.

4. Priorities
Each checkpoint has a priority level assigned by the Working Group based on the
checkpointʼs impact on accessibility.

[Priority 1] A Web content developer must satisfy this checkpoint. Otherwise, one
or more groups will find it impossible to access information in the document. Satisfying
this checkpoint is a basic requirement for some groups to be able to use Web
documents.

156

[Priority 2] A Web content developer should satisfy this checkpoint. Otherwise, one
or more groups will find it difficult to access information in the document. Satisfying this
checkpoint will remove significant barriers to accessing Web documents.

[Priority 3] A Web content developer may address this checkpoint. Otherwise, one
or more groups will find it somewhat difficult to access information in the document.
Satisfying this checkpoint will improve access to Web documents.

Some checkpoints specify a priority level that may change under certain (indicated)
conditions.

5. Conformance
This section defines three levels of conformance to this document:
• Conformance Level "A": all Priority 1 checkpoints are satisfied;
• Conformance Level "Double-A": all Priority 1 and 2 checkpoints are satisfied;
• Conformance Level "Triple-A": all Priority 1, 2, and 3 checkpoints are satisfied;

Note. Conformance levels are spelled out in text so they may be understood when
rendered to speech.

Claims of conformance to this document must use one of the following two forms.
Form 1: Specify:
• The guidelines title: "Web Content Accessibility Guidelines 1.0"
• The guidelines URI: http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
• The conformance level satisfied: "A", "Double-A", or "Triple-A".
• The scope covered by the claim (e.g., page, site, or defined portion of a site.).

Example of Form 1:
This page conforms to W3Cʼs "Web Content Accessibility Guidelines 1.0", available

at http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505, level Double-A.
Form 2: Include, on each page-claiming conformance, one of three icons provided

by W3C and link the icon to the appropriate W3C explanation of the claim. Information
about the icons and how to insert them in pages is available at [WCAG-ICONS] [p. 33].

6. Web Content Accessibility Guidelines
Guideline 1. Provide equivalent alternatives to auditory and
visual content.
Provide content that, when presented to the user, conveys essentially the
same function or purpose as auditory or visual content.
Although some people cannot use images, movies, sounds, applets, etc. directly, they
may still use pages that include equivalent [p. 27] information to the visual or auditory
content. The equivalent information must serve the same purpose as the visual or
auditory content. Thus, a text equivalent for an image of an upward arrow that links to a
table of contents could be "Go to table of contents". In some cases, an equivalent
should also describe the appearance of visual content (e.g., for complex charts,
billboards, or diagrams) or the sound of auditory content (e.g., for audio samples used
in education).

This guideline emphasizes the importance of providing text equivalents [p. 27] of

157

non-text content (images, pre-recorded audio, video). The power of text equivalents lies
in their capacity to be rendered in ways that are accessible to people from various
disability groups using a variety of technologies. Text can be readily output to speech
synthesizers and braille displays [p. 26] , and can be presented visually (in a variety of
sizes) on computer displays and paper. Synthesized speech is critical for individuals
who are blind and for many people with the reading difficulties that often accompany
cognitive disabilities, learning disabilities, and deafness. Braille is essential for
individuals who are both deaf and blind, as well as many individuals whose only
sensory disability is blindness. Text displayed visually benefits users who are deaf as
well as the majority of Web users.

Providing non-text equivalents (e.g., pictures, videos, and pre-recorded audio) of
text is also beneficial to some users, especially nonreaders or people who have
difficulty reading. In movies or visual presentations, visual action such as body
language or other visual cues may not be accompanied by enough audio information to
convey the same information. Unless verbal descriptions of this visual information are
provided, people who cannot see (or look at) the visual content will not be able to
perceive it.

Checkpoints:
1.1 Provide a text equivalent for every non-text element (e.g., via "alt", "longdesc", or in

element content). This includes: images, graphical representations of text
(including symbols), image map regions, animations (e.g., animated GIFs),
applets and programmatic objects, ascii art, frames, scripts, images used as list
bullets, spacers, graphical buttons, sounds (played with or without user
interaction), stand-alone audio files, audio tracks of video, and video. [Priority 1]
For example, in HTML:
• Use "alt" for the IMG, INPUT, and APPLET elements, or provide a text

equivalent in the content of the OBJECT and APPLET elements.
• For complex content (e.g., a chart) where the "alt" text does not provide a

complete text equivalent, provide an additional description using, for example,
"longdesc" with IMG or FRAME, a link inside an OBJECT element, or a
description link [p. 28].

• For image maps, either use the "alt" attribute with AREA, or use the MAP
element with A elements (and other text) as content.

Refer also to checkpoint 9.1 and checkpoint 13.10.
Techniques for checkpoint 1.1

1.2 Provide redundant text links for each active region of a server-side image map.
[Priority 1]
Refer also to checkpoint 1.5 and checkpoint 9.1.
Techniques for checkpoint 1.2

1.3 Until user agents [p. 30] can automatically read aloud the text equivalent of a visual
track, provide an auditory description of the important information of the visual
track of a multimedia presentation. [Priority 1]
Synchronize the auditory description [p. 28] with the audio track as per checkpoint
1.4. Refer to checkpoint 1.1 for information about textual equivalents for visual
information.
Techniques for checkpoint 1.3

1.4 For any time-based multimedia presentation (e.g., a movie or animation),

158

synchronize equivalent alternatives (e.g., captions or auditory descriptions of the
visual track) with the presentation. [Priority 1]
Techniques for checkpoint 1.4

1.5 Until user agents [p. 30] render text equivalents for client-side image map links,
provide redundant text links for each active region of a client-side image map.
[Priority 3]
Refer also to checkpoint 1.2 and checkpoint 9.1.
Techniques for checkpoint 1.5

Guideline 2. Donʼt rely on color alone.
Ensure that text and graphics are understandable when viewed without
color.
If color alone is used to convey information, people who cannot differentiate between
certain colors and users with devices that have non-color or non-visual displays will not
receive the information. When foreground and background colors are too close to the
same hue, they may not provide sufficient contrast when viewed using monochrome
displays or by people with different types of color deficits.

Checkpoints:
2.1 Ensure that all information conveyed with color is also available without color, for

example from context or markup. [Priority 1]
Techniques for checkpoint 2.1

2.2 Ensure that foreground and background color combinations provide sufficient
contrast when viewed by someone having color deficits or when viewed on a
black and white screen. [Priority 2 for images, Priority 3 for text].
Techniques for checkpoint 2.2

Guideline 3. Use markup and style sheets and do so properly.
Mark up documents with the proper structural elements. Control
presentation with style sheets rather than with presentation elements and
attributes.
Using markup improperly -- not according to specification -- hinders accessibility.
Misusing markup for a presentation effect (e.g., using a table for layout or a header to
change the font size) makes it difficult for users with specialized software to understand
the organization of the page or to navigate through it. Furthermore, using presentation
markup rather than structural markup to convey structure (e.g., constructing what looks
like a table of data with an HTML PRE element) makes it difficult to render a page
intelligibly to other devices (refer to the description of difference between content,
structure, and presentation [p. 26]).

Content developers may be tempted to use (or misuse) constructs that achieve a
desired formatting effect on older browsers. They must be aware that these practices
cause accessibility problems and must consider whether the formatting effect is so
critical as to warrant making the document inaccessible to some users.

At the other extreme, content developers must not sacrifice appropriate markup
because a certain browser or assistive technology does not process it correctly. For
example, it is appropriate to use the TABLE element in HTML to mark up tabular

159

information [p. 29] even though some older screen readers may not handle side-by-
side text correctly (refer to checkpoint 10.3). Using TABLE correctly and creating tables
that transform gracefully (refer to guideline 5) makes it possible for software to render
tables other than as two-dimensional grids.

Checkpoints:
3.1 When an appropriate markup language exists, use markup rather than images to

convey information. [Priority 2]
For example, use MathML to mark up mathematical equations, and style sheets
[p. 29] to format text and control layout. Also, avoid using images to represent text
-- use text and style sheets instead. Refer also to guideline 6 and guideline 11.
Techniques for checkpoint 3.1

3.2 Create documents that validate to publish formal grammars. [Priority 2] For
example, include a document type declaration at the beginning of a document
that refers to a published DTD (e.g., the strict HTML 4.0 DTD).
Techniques for checkpoint 3.2

3.3 Use style sheets to control layout and presentation. [Priority 2] For example, use
the CSS ʼfontʼ property instead of the HTML FONT element to control font styles.
Techniques for checkpoint 3.3

3.4 Use relative rather than absolute units in markup language attribute values and
style sheet property values. [Priority 2]
For example, in CSS, use ʼemʼ or percentage lengths rather than ʼptʼ or ʼcmʼ,
which are absolute units. If absolute units are used, validate that the rendered
content is usable (refer to the section on validation [p. 24]).
Techniques for checkpoint 3.4

3.5 Use header elements to convey document structure and use them according to
specification. [Priority 2]
For example, in HTML, use H2 to indicate a subsection of H1. Do not use
headers for font effects.
Techniques for checkpoint 3.5

3.6 Mark up lists and list items properly. [Priority 2] For example, in HTML, nest OL,
UL, and DL lists properly. Techniques for checkpoint 3.6

3.7 Mark up quotations. Do not use quotation markup for formatting effects such as
indentation. [Priority 2]
For example, in HTML, use the Q and BLOCKQUOTE elements to markup short
and longer quotations, respectively.
Techniques for checkpoint 3.7

Guideline 4. Clarify natural language usage
Use markup that facilitates pronunciation or interpretation of abbreviated
or foreign text.
When content developers mark up natural language changes in a document, speech
synthesizers and braille devices can automatically switch to the new language, making
the document more accessible to multilingual users. Content developers should identify
the predominant natural language [p. 29] of a documentʼs content (through markup or
HTTP headers). Content developers should also provide expansions of abbreviations

160

and acronyms.
In addition to helping assistive technologies, natural language markup allows

search engines to find key words and identify documents in a desired language.
Natural language markup also improves readability of the Web for all people, including
those with learning disabilities, cognitive disabilities, or people who are deaf.

When abbreviations and natural language changes are not identified, they may be
indecipherable when machine-spoken or brailled.

Checkpoints:
4.1 Clearly identify changes in the natural language of a documentʼs text and any text

equivalents [p. 27] (e.g., captions). [Priority 1]
For example, in HTML use the "lang" attribute. In XML, use "xml:lang".
Techniques for checkpoint 4.1

4.2 Specify the expansion of each abbreviation or acronym in a document where it first
occurs. [Priority 3]
For example, in HTML, use the "title" attribute of the ABBR and ACRONYM
elements. Providing the expansion in the main body of the document also helps
document usability.
Techniques for checkpoint 4.2

4.3 Identify the primary natural language of a document. [Priority 3] For example, in
HTML set the "lang" attribute on the HTML element. In XML, use "xml:lang".
Server operators should configure servers to take advantage of HTTP content
negotiation mechanisms ([RFC2068] [p. 33] , section 14.13) so that clients can
automatically retrieve documents of the preferred language.
Techniques for checkpoint 4.3

Guideline 5. Create tables that transform gracefully.
Ensure that tables have necessary markup to be transformed by
accessible browsers and other user agents.
Tables should be used to mark up truly tabular information [p. 29] ("data tables").
Content developers should avoid using them to lay out pages ("layout tables"). Tables
for any use also present special problems to users of screen readers [p. 29] (refer to
checkpoint 10.3). Some user agents [p. 30] allow users to navigate among table cells
and access header and other table cell information. Unless marked-up properly, these
tables will not provide user agents with the appropriate information. (Refer also to
guideline 3.)

The following checkpoints will directly benefit people who access a table through
auditory means (e.g., a screen reader or an automobile-based personal computer) or
who view only a portion of the page at a time (e.g., users with blindness or low vision
using speech output or a braille display, [p. 26] or other users of devices with small
displays, etc.).

Checkpoints:
5.1 For data tables, identify row and column headers. [Priority 1] For example, in

HTML, use TD to identify data cells and TH to identify headers.
Techniques for checkpoint 5.1

161

5.2 For data tables that have two or more logical levels of row or column headers, use
markup to associate data cells and header cells. [Priority 1]
For example, in HTML, use THEAD, TFOOT, and TBODY to group rows, COL
and COLGROUP to group columns, and the "axis", "scope", and "headers"
attributes, to describe more complex relationships among data.
Techniques for checkpoint 5.2

5.3 Do not use tables for layout unless the table makes sense when linearized.
Otherwise, if the table does not make sense, provide an alternative equivalent
(which may be a linearized version [p. 28]). [Priority 2]
Note. Once user agents [p. 30] support style sheet positioning, tables should not
be used for layout. Refer also to checkpoint 3.3.
Techniques for checkpoint 5.3

5.4 If a table is used for layout, do not use any structural markup for the purpose of
visual formatting. [Priority 2]
For example, in HTML do not use the TH element to cause the content of a (non-
table header) cell to be displayed centered and in bold.
Techniques for checkpoint 5.4

5.5 Provide summaries for tables. [Priority 3] For example, in HTML, use the
"summary" attribute of the TABLE element.
Techniques for checkpoint 5.5

5.6 Provide abbreviations for header labels. [Priority 3] For example, in HTML, use the
"abbr" attribute on the TH element.
Techniques for checkpoint 5.6
Refer also to checkpoint 10.3.

Guideline 6. Ensure that pages featuring new technologies
transform gracefully.
Ensure that pages are accessible even when newer technologies are not
supported or are turned off.
Although content developers are encouraged to use new technologies that solve
problems raised by existing technologies, they should know how to make their pages
still work with older browsers and people who choose to turn off features.

Checkpoints:
6.1 Organize documents so they may be read without style sheets. For example, when

an HTML document is rendered without associated style sheets, it must still be
possible to read the document. [Priority 1]
When content is organized logically, it will be rendered in a meaningful order
when style sheets are turned off or not supported.
Techniques for checkpoint 6.1

6.2 Ensure that equivalents for dynamic content are updated when the dynamic content
changes. [Priority 1]
Techniques for checkpoint 6.2

6.3 Ensure that pages are usable when scripts, applets, or other programmatic objects
are turned off or not supported. If this is not possible, provide equivalent
information on an alternative accessible page. [Priority 1]

162

For example, ensure that links that trigger scripts work when scripts are turned off
or not supported (e.g., do not use "javascript:" as the link target). If it is not
possible to make the page usable without scripts, provide a text equivalent with
the NOSCRIPT element, or use a server-side script instead of a client-side script,
or provide an alternative accessible page as per checkpoint 11.4. Refer also to
guideline 1.
Techniques for checkpoint 6.3

6.4 For scripts and applets, ensure that event handlers are input device-independent.
[Priority 2]
Refer to the definition of device independence [p. 26] .
Techniques for checkpoint 6.4

6.5 Ensure that dynamic content is accessible or provide an alternative presentation or
page. [Priority 2]
For example, in HTML, use NOFRAMES at the end of each frameset. For some
applications, server-side scripts may be more accessible than client-side scripts.
Techniques for checkpoint 6.5
Refer also to checkpoint 11.4.

Guideline 7. Ensure user control of time-sensitive content
changes.
Ensure that moving, blinking, scrolling, or auto-updating objects or pages
may be paused or stopped.
Some people with cognitive or visual disabilities are unable to read moving text quickly
enough or at all. Movement can also cause such a distraction that the rest of the page
becomes unreadable for people with cognitive disabilities. Screen readers [p. 29] are
unable to read moving text. People with physical disabilities might not be able to move
quickly or accurately enough to interact with moving objects.

Note. All of the following checkpoints involve some content developer responsibility
until user agents [p. 30] provide adequate feature control mechanisms.

Checkpoints:
7.1 Until user agents [p. 30] allow users to control flickering, avoid causing the screen

to flicker. [Priority 1]
Note. People with photosensitive epilepsy can have seizures triggered by
flickering or flashing in the 4 to 59 flashes per second (Hertz) range with a peak
sensitivity at 20 flashes per second as well as quick changes from dark to light
(like strobe lights). Techniques for checkpoint 7.1

7.2 Until user agents [p. 30] allow users to control blinking, avoid causing content to
blink (i.e., change presentation at a regular rate, such as turning on and off).
[Priority 2]
Techniques for checkpoint 7.2

7.3 Until user agents [p. 30] allow users to freeze moving content, avoid movement in
pages. [Priority 2]
When a page includes moving content, provide a mechanism within a script or
applet to allow users to freeze motion or updates. Using style sheets with
scripting to create movement allows users to turn off or override the effect more

163

easily. Refer also to guideline 8.
Techniques for checkpoint 7.3

7.4 Until user agents [p. 30] provide the ability to stop the refresh, do not create
periodically auto-refreshing pages. [Priority 2]
For example, in HTML, donʼt cause pages to auto-refresh with "HTTP-
EQUIV=refresh" until user agents allow users to turn off the feature.
Techniques for checkpoint 7.4

7.5 Until user agents [p. 30] provide the ability to stop auto-redirect, do not use markup
to redirect pages automatically. Instead, configure the server to perform redirects.
[Priority 2]
Techniques for checkpoint 7.5
Note. The BLINK and MARQUEE elements are not defined in any W3C HTML
specification and should not be used. Refer also to guideline 11.

Guideline 8. Ensure direct accessibility of embedded user
interfaces.
Ensure that the user interface follows principles of accessible design:
device-independent access to functionality, keyboard operability, self-
voicing, etc.
When an embedded object has its "own interface", the interface -- like the interface to
the browser itself -- must be accessible. If the interface of the embedded object cannot
be made accessible, an alternative accessible solution must be provided.

Note. For information about accessible interfaces, please consult the User Agent
Accessibility Guidelines ([WAI-USERAGENT] [p. 33]) and the Authoring Tool
Accessibility Guidelines ([WAI-AUTOOL] [p. 33]).

Checkpoint:
8.1 Make programmatic elements such as scripts and applets directly accessible or

compatible with assistive technologies [Priority 1 if functionality is important [p.
28] and not presented elsewhere, otherwise Priority 2.]
Refer also to guideline 6.
Techniques for checkpoint 8.1

Guideline 9. Design for device-independence.
Use features that enable activation of page elements via a variety of input
devices.
Device-independent [p. 26] access means that the user may interact with the user
agent or document with a preferred input (or output) device -- mouse, keyboard, voice,
head wand, or other. If, for example, a form control can only be activated with a mouse
or other pointing device, someone who is using the page without sight, with voice input,
or with a keyboard or who is using some other non-pointing input device will not be able
to use the form.

Note. Providing text equivalents for image maps or images used as links makes it
possible for users to interact with them without a pointing device. Refer also to
guideline 1.

164

Generally, pages that allow keyboard interaction are also accessible through
speech input or a command line interface.

Checkpoints:
9.1 Provide client-side image maps instead of server-side image maps except where

the regions cannot be defined with an available geometric shape. [Priority 1]
Refer also to checkpoint 1.1, checkpoint 1.2, and checkpoint 1.5.
Techniques for checkpoint 9.1

9.2 Ensure that any element that has its own interface can be operated in a device-
independent manner. [Priority 2]
Refer to the definition of device independence [p. 26] . Refer also to guideline 8.
Techniques for checkpoint 9.2

9.3 For scripts, specify logical event handlers rather than device-dependent event
handlers. [Priority 2]
Techniques for checkpoint 9.3

9.4 Create a logical tab order through links, form controls, and objects. [Priority 3]
For example, in HTML, specify tab order via the "tabindex" attribute or ensure a
logical page design.
Techniques for checkpoint 9.4

9.5 Provide keyboard shortcuts to important links (including those in client-side image
maps [p. 28]), form controls, and groups of form controls. [Priority 3]
For example, in HTML, specify shortcuts via the "accesskey" attribute.
Techniques for checkpoint 9.5

Guideline 10. Use interim solutions.
Use interim accessibility solutions so that assistive technologies and older
browsers will operate correctly.
For example, older browsers do not allow users to navigate to empty edit boxes. Older
screen readers read lists of consecutive links as one link. These active elements are
therefore difficult or impossible to access. Also, changing the current window or
popping up new windows can be very disorienting to users who cannot see that this
has happened.

Note. The following checkpoints apply until user agents [p. 30] (including assistive
technologies [p. 25]) address these issues. These checkpoints are classified as
"interim", meaning that the Web Content Guidelines Working Group considers them to
be valid and necessary to Web accessibility as of the publication of this document.
However, the Working Group does not expect these checkpoints to be necessary in the
future, once Web technologies have incorporated anticipated features or capabilities.

Checkpoints:
10.1 Until user agents [p. 30] allow users to turn off spawned windows, do not cause

pop-ups or other windows to appear and do not change the current window
without informing the user. [Priority 2]
For example, in HTML, avoid using a frame whose target is a new window.
Techniques for checkpoint 10.1

10.2 Until user agents [p. 30] support explicit associations between labels and form

165

controls, for all form controls with implicitly associated labels, ensure that the
label is properly positioned. [Priority 2]
The label must immediately precede its control on the same line (allowing more
than one control/label per line) or be in the line preceding the control (with only
one label and one control per line). Refer also to checkpoint 12.4.
Techniques for checkpoint 10.2

10.3 Until user agents [p. 30] (including assistive technologies) render side-by-side text
correctly, provide a linear text alternative (on the current page or some other) for
all tables that lay out text in parallel, word-wrapped columns. [Priority 3]
Note. Please consult the definition of linearized table [p. 28] . This checkpoint
benefits people with user agents [p. 30] (such as some screen readers [p. 29])
that are unable to handle blocks of text presented side-by-side; the checkpoint
should not discourage content developers from using tables to represent tabular
information [p. 29] .
Techniques for checkpoint 10.3

10.4 Until user agents [p. 30] handle empty controls correctly, include default, place-
holding characters in edit boxes and text areas. [Priority 3]
For example, in HTML, do this for TEXTAREA and INPUT.
Techniques for checkpoint 10.4

10.5 Until user agents [p. 30] (including assistive technologies) render adjacent links
distinctly, include non-link, printable characters (surrounded by spaces) between
adjacent links. [Priority 3]
Techniques for checkpoint 10.5

Guideline 11. Use W3C technologies and guidelines.
Use W3C technologies (according to specification) and follow
accessibility guidelines. Where it is not possible to use a W3C
technology, or doing so results in material that does not transform
gracefully, provide an alternative version of the content that is accessible.
The current guidelines recommend W3C technologies (e.g., HTML, CSS, etc.) for
several reasons:
• W3C technologies include "built-in" accessibility features.
• W3C specifications undergo early review to ensure that accessibility issues are

considered during the design phase.
• W3C specifications are developed in an open, industry consensus process.

Many non-W3C formats (e.g., PDF, Shockwave, etc.) require viewing with either
plug-ins or stand-alone applications. Often, these formats cannot be viewed or
navigated with standard user agents [p. 30] (including assistive technologies [p. 25]).
Avoiding non-W3C and non-standard features (proprietary elements, attributes,
properties, and extensions) will tend to make pages more accessible to more people
using a wider variety of hardware and software. When inaccessible technologies
(proprietary or not) must be used, equivalent accessible pages must be provided.

Even when W3C technologies are used, they must be used in accordance with
accessibility guidelines. When using new technologies, ensure that they transform
gracefully (Refer also to guideline 6.).

Note. Converting documents (from PDF, PostScript, RTF, etc.) to W3C markup

166

languages (HTML, XML) does not always create an accessible document. Therefore,
validate each page for accessibility and usability after the conversion process (refer to
the section on validation [p. 24]). If a page does not readily convert, either revise the
page until its original representation converts appropriately or provide an HTML or plain
text version.

Checkpoints:
11.1 Use W3C technologies when they are available and appropriate for a task and

use the latest versions when supported. [Priority 2]
Refer to the list of references [p. 32] for information about where to find the latest
W3C specifications and [WAI-UA-SUPPORT] [p. 33] for information about user
agent support for W3C technologies.
Techniques for checkpoint 11.1

11.2 Avoid deprecated features of W3C technologies. [Priority 2] For example, in
HTML, donʼt use the deprecated [p. 26] FONT element; use style sheets instead
(e.g., the ʼfontʼ property in CSS).
Techniques for checkpoint 11.2

11.3 Provide information so that users may receive documents according to their
preferences (e.g., language, content type, etc.) [Priority 3]
Note. Use content negotiation where possible.
Techniques for checkpoint 11.3

11.4 If, after best efforts [p. 21] , you cannot create an accessible [p. 25] page, provide
a link to an alternative page that uses W3C technologies, is accessible, has
equivalent [p. 27] information (or functionality), and is updated as often as the
inaccessible (original) page. [Priority 1]
Techniques for checkpoint 11.4
Note. Content developers should only resort to alternative pages when other
solutions fail because alternative pages are generally updated less often than
"primary" pages. An out-of-date page may be as frustrating as one that is
inaccessible since, in both cases, the information presented on the original page
is unavailable. Automatically generating alternative pages may lead to more
frequent updates, but content developers must still be careful to ensure that
generated pages always make sense, and that users are able to navigate a site
by following links on primary pages, alternative pages, or both. Before resorting to
an alternative page, reconsider the design of the original page; making it
accessible is likely to improve it for all users.

Guideline 12. Provide context and orientation information.
Provide context and orientation information to help users understand
complex pages or elements.
Grouping elements and providing contextual information about the relationships
between elements can be useful for all users. Complex relationships between parts of a
page may be difficult for people with cognitive disabilities and people with visual
disabilities to interpret.

Checkpoints:
12.1 Title each frame to facilitate frame identification and navigation. [Priority 1] For

example, in HTML use the "title" attribute on FRAME elements.

167

Techniques for checkpoint 12.1
12.2 Describe the purpose of frames and how frames relate to each other if it is not

obvious by frame titles alone. [Priority 2]
For example, in HTML, use "longdesc," or a description link. [p. 28]
Techniques for checkpoint 12.2

12.3 Divide large blocks of information into more manageable groups where natural
and appropriate. [Priority 2]
For example, in HTML, use OPTGROUP to group OPTION elements inside a
SELECT; group form controls with FIELDSET and LEGEND; use nested lists
where appropriate; use headings to structure documents, etc. Refer also to
guideline 3.
Techniques for checkpoint 12.3

12.4 Associate labels explicitly with their controls. [Priority 2]
For example, in HTML use LABEL and its "for" attribute.
Techniques for checkpoint 12.4

Guideline 13. Provide clear navigation mechanisms.
Provide clear and consistent navigation mechanisms -- orientation
information, navigation bars, a site map, etc. -- to increase the likelihood
that a person will find what they are looking for at a site.
Clear and consistent navigation mechanisms [p. 29] are important to people with
cognitive disabilities or blindness, and benefit all users.

Checkpoints:
13.1 Clearly identify the target of each link. [Priority 2] Link text [p. 29] should be

meaningful enough to make sense when read out of context -- either on its own or
as part of a sequence of links. Link text should also be terse. For example, in
HTML, write "Information about version 4.3" instead of "click here". In addition to
clear link text, content developers may further clarify the target of a link with an
informative link title (e.g., in HTML, the "title" attribute).
Techniques for checkpoint 13.1

13.2 Provide metadata to add semantic information to pages and sites. [Priority 2] For
example, use RDF ([RDF] [p. 32]) to indicate the documentʼs author, the type of
content, etc. Note. Some HTML user agents [p. 30] can build navigation tools
from document relations described by the HTML LINK element and "rel" or "rev"
attributes (e.g., rel="next", rel="previous", rel="index", etc.). Refer also to
checkpoint 13.5.
Techniques for checkpoint 13.2

13.3 Provide information about the general layout of a site (e.g., a site map or table of
contents). [Priority 2]
In describing site layout, highlight and explain available accessibility features.
Techniques for checkpoint 13.3

13.4 Use navigation mechanisms in a consistent manner. [Priority 2]
Techniques for checkpoint 13.4

13.5 Provide navigation bars to highlight and give access to the navigation mechanism.
[Priority 3]

168

Techniques for checkpoint 13.5
13.6 Group related links, identify the group (for user agents), and, until user agents [p.

30] do so, provide a way to bypass the group. [Priority 3]
Techniques for checkpoint 13.6

13.7 If search functions are provided, enable different types of searches for different
skill levels and preferences. [Priority 3]
Techniques for checkpoint 13.7

13.8 Place distinguishing information at the beginning of headings, paragraphs, lists,
etc. [Priority 3]
Note. This is commonly referred to as "front-loading" and is especially helpful for
people accessing information with serial devices such as speech synthesizers.
Techniques for checkpoint 13.8

13.9 Provide information about document collections (i.e., documents comprising
multiple pages.). [Priority 3]
For example, in HTML specify document collections with the LINK element and
the "rel" and "rev" attributes. Another way to create a collection is by building an
archive (e.g., with zip, tar and gzip, stuffit, etc.) of the multiple pages. Note. The
performance improvement gained by offline processing can make browsing much
less expensive for people with disabilities who may be browsing slowly.
Techniques for checkpoint 13.9

13.10 Provide a means to skip over multi-line ASCII art. [Priority 3]
Refer to checkpoint 1.1 and the example of ascii art in the glossary [p. 25] .
Techniques for checkpoint 13.10

Guideline 14. Ensure that documents are clear and simple.
Ensure that documents are clear and simple so they may be more easily
understood.
Consistent page layout, recognizable graphics, and easy to understand language
benefit all users. In particular, they help people with cognitive disabilities or who have
difficulty reading. (However, ensure that images have text equivalents for people who
are blind, have low vision, or for any user who cannot or has chosen not to view
graphics. Refer also to guideline 1.)

Using clear and simple language promotes effective communication. Access to
written information can be difficult for people who have cognitive or learning disabilities.
Using clear and simple language also benefits people whose first language differs from
your own, including those people who communicate primarily in sign language.

Checkpoints:
14.1 Use the clearest and simplest language appropriate for a siteʼs content. [Priority 1]

Techniques for checkpoint 14.1
14.2 Supplement text with graphic or auditory presentations where they will facilitate

comprehension of the page. [Priority 3]
Refer also to guideline 1.
Techniques for checkpoint 14.2

14.3 Create a style of presentation that is consistent across pages. [Priority 3]

169

Techniques for checkpoint 14.3

Appendix A. -- Validation
Validate accessibility with automatic tools and human review. Automated
methods are generally rapid and convenient but cannot identify all accessibility
issues. Human review can help ensure clarity of language and ease of
navigation.
Begin using validation methods at the earliest stages of development. Accessibility
issues identified early are easier to correct and avoid.
Following are some important validation methods, discussed in more detail in the
section on validation in the Techniques Document.
1. Use an automated accessibility tool and browser validation tool. Please note that
software tools do not address all accessibility issues, such as the meaningfulness of
link text, the applicability of a text equivalent [p. 27], etc.
2. Validate syntax (e.g., HTML, XML, etc.).
3. Validate style sheets (e.g., CSS).
4. Use a text-only browser or emulator.
5. Use multiple graphic browsers, with:

• sounds and graphics loaded,
• graphics not loaded,
• sounds not loaded,
• no mouse,
• frames, scripts, style sheets, and applets not loaded

6. Use several browsers, old and new.
7. Use a self-voicing browser, a screen reader, magnification software, a small display,
etc.
8. Use spell and grammar checkers. A person reading a page with a speech
synthesizer may not be able to decipher the synthesizerʼs best guess for a word with a
spelling error. Eliminating grammar problems increases comprehension.
9. Review the document for clarity and simplicity. Readability statistics, such as those
generated by some word processors may be useful indicators of clarity and simplicity.
Better still, ask an experienced (human) editor to review written content for clarity.
Editors can also improve the usability of documents by identifying potentially sensitive
cultural issues that might arise due to language or icon usage.
10. Invite people with disabilities to review documents. Expert and novice users with
disabilities will provide valuable feedback about accessibility or usability problems and
their severity.

Appendix B. -- Glossary
Accessible

Content is accessible when it may be used by someone with a disability.
Applet

A program inserted into a Web page.

170

Assistive technology
Software or hardware that has been specifically designed to assist people with
disabilities in carrying out daily activities. Assistive technology includes wheelchairs,
reading machines, devices for grasping, etc. In the area of Web Accessibility,
common software-based assistive technologies include screen readers, screen
magnifiers, speech synthesizers, and voice input software that operate in
conjunction with graphical desktop browsers (among other user agents [p. 30]).
Hardware assistive technologies include alternative keyboards and pointing
devices.

ASCII art
ASCII art refers to text characters and symbols that are combined to create an
image. For example ";-)" is the smiley emoticon. The following is an ascii figure
showing the relationship between flash frequency and photoconvulsive response in
patients with eyes open and closed [skip over ascii figure [p. 25] or consult a
description of chart]:

Authoring tool
HTML editors, document conversion tools, tools that generate Web content from
databases are all authoring tools. Refer to the "Authoring Tool Accessibility
Guidelines" ([WAI-AUTOOLS] [p. 33]) for information about developing accessible
tools.

Backward compatible
Design that continues to work with earlier versions of a language, program, etc.

Braille
Braille uses six raised dots in different patterns to represent letters and numbers to
be read by people who are blind with their fingertips. The word "Accessible" in
braille follows:

A braille display, commonly referred to as a "dynamic braille display," raises or
lowers dot patterns on command from an electronic device, usually a computer.
The result is a line of braille that can change from moment to moment. Current
dynamic braille displays range in size from one cell (six or eight dots) to an eighty-
cell line, most having between twelve and twenty cells per line.

Content developer
Someone who authors Web pages or designs Web sites.

Appendix B. -- Glossary
Accessible

Content is accessible when it may be used by someone with a disability.
Applet

A program inserted into a Web page.
Assistive technology

Software or hardware that has been specifically designed to assist people with
disabilities in carrying out daily activities. Assistive technology includes
wheelchairs, reading machines, devices for grasping, etc. In the area of Web
Accessibility, common software-based assistive technologies include screen
readers, screen magnifiers, speech synthesizers, and voice input software that
operate in conjunction with graphical desktop browsers (among other user
agents [p. 30]). Hardware assistive technologies include alternative keyboards
and pointing devices.

ASCII art
ASCII art refers to text characters and symbols that are combined to create an
image. For example ";-)" is the smiley emoticon. The following is an ascii figure
showing the relationship between flash frequency and photoconvulsive
response in patients with eyes open and closed [skip over ascii figure [p. 25] or
consult a description of chart]:

 % __ __ __ __ __ __ __ __ __ __ __ __ __ __
100 | * |
 90 | * * |
 80 | * * |
 70 | @ * |
 60 | @ * |
 50 | * @ * |
 40 | @ * |
 30 | * @ @ @ * |
 20 | |
 10 | @ @ @ @ @ |
 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
 Flash frequency (Hertz)

Authoring tool
HTML editors, document conversion tools, tools that generate Web content from
databases are all authoring tools. Refer to the "Authoring Tool Accessibility
Guidelines" ([WAI-AUTOOLS] [p. 33]) for information about developing
accessible tools.

Backward compatible
Design that continues to work with earlier versions of a language, program, etc.

Braille
Braille uses six raised dots in different patterns to represent letters and numbers
to be read by people who are blind with their fingertips. The word "Accessible" in
braille follows:

25

Web Content Accessibility Guidelines 1.0

A braille display, commonly referred to as a "dynamic braille display," raises or
lowers dot patterns on command from an electronic device, usually a computer.
The result is a line of braille that can change from moment to moment. Current
dynamic braille displays range in size from one cell (six or eight dots) to an
eighty-cell line, most having between twelve and twenty cells per line.

Content developer
Someone who authors Web pages or designs Web sites.

Deprecated
A deprecated element or attribute is one that has been outdated by newer
constructs. Deprecated elements may become obsolete in future versions of
HTML. The index of HTML elements and attributes in the Techniques Document
indicates which elements and attributes are deprecated in HTML 4.0.
Authors should avoid using deprecated elements and attributes. User agents
should continue to support for reasons of backward compatibility.

Device independent
Users must be able to interact with a user agent (and the document it renders)
using the supported input and output devices of their choice and according to
their needs. Input devices may include pointing devices, keyboards, braille
devices, head wands, microphones, and others. Output devices may include
monitors, speech synthesizers, and braille devices.
Please note that "device-independent support" does not mean that user agents
must support every input or output device. User agents should offer redundant
input and output mechanisms for those devices that are supported. For
example, if a user agent supports keyboard and mouse input, users should be
able to interact with all features using either the keyboard or the mouse.

Document Content, Structure, and Presentation
The content of a document refers to what it says to the user through natural
language, images, sounds, movies, animations, etc. The structure of a
document is how it is organized logically (e.g., by chapter, with an introduction
and table of contents, etc.). An element [p. 27] (e.g., P, STRONG,
BLOCKQUOTE in HTML) that specifies document structure is called a structural
element. The presentation of a document is how the document is rendered (e.g.,
as print, as a two-dimensional graphical presentation, as an text-only
presentation, as synthesized speech, as braille, etc.) An element [p. 27] that
specifies document presentation (e.g., B, FONT, CENTER) is called a
presentation element.
Consider a document header, for example. The content of the header is what
the header says (e.g., "Sailboats"). In HTML, the header is a structural element
marked up with, for example, an H2 element. Finally, the presentation of the
header might be a bold block text in the margin, a centered line of text, a title
spoken with a certain voice style (like an aural font), etc.

26

Web Content Accessibility Guidelines 1.0

171

Deprecated
A deprecated element or attribute is one that has been outdated by newer
constructs. Deprecated elements may become obsolete in future versions of HTML.
The index of HTML elements and attributes in the Techniques Document indicates
which elements and attributes are deprecated in HTML 4.0. Authors should avoid
using deprecated elements and attributes. User agents should continue to support
for reasons of backward compatibility.

Device independent
Users must be able to interact with a user agent (and the document it renders)
using the supported input and output devices of their choice and according to their
needs. Input devices may include pointing devices, keyboards, braille devices,
head wands, microphones, and others. Output devices may include monitors,
speech synthesizers, and braille devices. Please note that "device-independent
support" does not mean that user agents must support every input or output device.
User agents should offer redundant input and output mechanisms for those devices
that are supported. For example, if a user agent supports keyboard and mouse
input, users should be able to interact with all features using either the keyboard or
the mouse.

Document Content, Structure, and Presentation
The content of a document refers to what it says to the user through natural
language, images, sounds, movies, animations, etc. The structure of a document is
how it is organized logically (e.g., by chapter, with an introduction and table of
contents, etc.). An element [p. 27] (e.g., P, STRONG, BLOCKQUOTE in HTML)
that specifies document structure is called a structural element. The presentation of
a document is how the document is rendered (e.g., as print, as a two-dimensional
graphical presentation, as an text-only presentation, as synthesized speech, as
braille, etc.) An element [p. 27] that specifies document presentation (e.g., B,
FONT, CENTER) is called a presentation element. Consider a document header,
for example. The content of the header is what the header says (e.g., "Sailboats").
In HTML, the header is a structural element marked up with, for example, an H2
element. Finally, the presentation of the header might be a bold block text in the
margin, a centered line of text, a title spoken with a certain voice style (like an aural
font), etc.

Dynamic HTML (DHTML)
DHTML is the marketing term applied to a mixture of standards including HTML,
style sheets [p. 29] , the Document Object Model [DOM1] [p. 32] and scripting.
However, there is no W3C specification that formally defines DHTML. Most
guidelines may be applicable to applications using DHTML, however the following
guidelines focus on issues related to scripting and style sheets: guideline 1,
guideline 3, guideline 6, guideline 7, and guideline 9.

Element
This document uses the term "element" both in the strict SGML sense (an element
is a syntactic construct) and more generally to mean a type of content (such as
video or sound) or a logical construct (such as a header or list). The second sense
emphasizes that a guideline inspired by HTML could easily apply to another
markup language. Note that some (SGML) elements have content that is rendered
(e.g., the P, LI, or TABLE elements in HTML), some are replaced by external
content (e.g., IMG), and some affect processing (e.g., STYLE and SCRIPT cause

172

information to be processed by a style sheet or script engine). An element that
causes text characters to be part of the document is called a text element.

Equivalent
Content is "equivalent" to other content when both fulfill essentially the same
function or purpose upon presentation to the user. In the context of this document,
the equivalent must fulfill essentially the same function for the person with a
disability (at least insofar as is feasible, given the nature of the disability and the
state of technology), as the primary content does for the person without any
disability. For example, the text "The Full Moon" might convey the same information
as an image of a full moon when presented to users. Note that equivalent
information focuses on fulfilling the same function. If the image is part of a link
and understanding the image is crucial to guessing the link target, an equivalent
must also give users an idea of the link target. Providing equivalent information for
inaccessible content is one of the primary ways authors can make their documents
accessible to people with disabilities.
As part of fulfilling the same function of content an equivalent may involve a
description of that content (i.e., what the content looks like or sounds like). For
example, in order for users to understand the information conveyed by a complex
chart, authors should describe the visual information in the chart. Since text content
can be presented to the user as synthesized speech, braille, and visually-displayed
text, these guidelines require text equivalents for graphic and audio information.
Text equivalents must be written so that they convey all essential content. Non-text
equivalents (e.g., an auditory description of a visual presentation, a video of a
person telling a story using sign language as an equivalent for a written story, etc.)
also improve accessibility for people who cannot access visual information or
written text, including many individuals with blindness, cognitive disabilities,
learning disabilities, and deafness. Equivalent information may be provided in a
number of ways, including through attributes (e.g., a text value for the "alt" attribute
in HTML and SMIL), as part of element content (e.g., the OBJECT in HTML), as
part of the documentʼs prose, or via a linked document (e.g., designated by the
"longdesc" attribute in HTML or a description link). Depending on the complexity of
the equivalent, it may be necessary to combine techniques (e.g., use "alt" for an
abbreviated equivalent, useful to familiar readers, in addition to "longdesc" for a link
to more complete information, useful to first-time readers). The details of how and
when to provide equivalent information are part of the Techniques Document
([TECHNIQUES] [p. 33]).
A text transcript is a text equivalent of audio information that includes spoken
words and non-spoken sounds such as sound effects. A caption is a text transcript
for the audio track of a video presentation that is synchronized with the video and
audio tracks. Captions are generally rendered visually by being superimposed over
the video, which benefits people who are deaf and hard-of-hearing, and anyone
who cannot hear the audio (e.g., when in a crowded room). A collated text
transcript combines (collates) captions with text descriptions of video information
(descriptions of the actions, body language, graphics, and scene changes of the
video track). These text equivalents make presentations accessible to people who
are deaf-blind and to people who cannot play movies, animations, etc. It also
makes the information available to search engines. One example of a non-text
equivalent is an auditory description of the key visual elements of a presentation.
The description is either a prerecorded human voice or a synthesized voice
(recorded or generated on the fly). The auditory description is synchronized with the

173

audio track of the presentation, usually during natural pauses in the audio track.
Auditory descriptions include information about actions, body language, graphics,
and scene changes.

Image
A graphical presentation.

Image map
An image that has been divided into regions with associated actions. Clicking on an
active region causes an action to occur. When a user clicks on an active region of a
client-side image map, the user agent calculates in which region the click occurred
and follows the link associated with that region. Clicking on an active region of a
server- side image map causes the coordinates of the click to be sent to a server,
which then performs some action. Content developers can make client-side image
maps accessible by providing device-independent access to the same links
associated with the image mapʼs regions. Client-side image maps allow the user
agent to provide immediate feedback as to whether or not the userʼs pointer is over
an active region.

Important
Information in a document is important if understanding that information is crucial to
understanding the document.

Linearized table
A table rendering process where the contents of the cells become a series of
paragraphs (e.g., down the page) one after another. The paragraphs will occur in
the same order as the cells are defined in the document source. Cells should make
sense when read in order and should include structural elements [p. 26] (that create
paragraphs, headers, lists, etc.) so the page makes sense after linearization.

Link text
The rendered text content of a link.

Natural Language
Spoken, written, or signed human languages such as French, Japanese, American
Sign Language, and braille. The natural language of content may be indicated with
the "lang" attribute in HTML ([HTML40] [p. 32], section 8.1) and the "xml:lang"
attribute in XML ([XML] [p. 33] , section 2.12).

Navigation Mechanism
A navigation mechanism is any means by which a user can navigate a page or site.
Some typical mechanisms include:
navigation bars

A navigation bar is a collection of links to the most important parts of a document
or site.

site maps
A site map provides a global view of the organization of a page or site.

tables of contents
A table of contents generally lists (and links to) the most important sections of a
document.

Personal Digital Assistant (PDA)
A PDA is a small, portable computing device. Most PDAs are used to track
personal data such as calendars, contacts, and electronic mail. A PDA is generally
a handheld device with a small screen that allows input from various sources.

174

Screen magnifier
A software program that magnifies a portion of the screen, so that it can be more
easily viewed. Screen magnifiers are used primarily by individuals with low vision.

Screen reader
A software program that reads the contents of the screen aloud to a user. Screen
readers are used primarily by individuals who are blind. Screen readers can usually
only read text that is printed, not painted, to the screen.

Style sheets
A style sheet is a set of statements that specify presentation of a document. Style
sheets may have three different origins: they may be written by content providers,
created by users, or built into user agents. In CSS ([CSS2] [p. 32]), the interaction
of content provider, user, and user agent style sheets is called the cascade.

Presentation markup
Is markup that achieves a stylistic (rather than structuring) effect such as the B or I
elements in HTML. Note that the STRONG and EM elements are not considered
presentation markup since they convey information that is independent of a
particular font style.

Tabular information
When tables are used to represent logical relationships among data -- text,
numbers, images, etc., that information is called "tabular information" and the tables
are called "data tables". The relationships expressed by a table may be rendered
visually (usually on a two-dimensional grid), aurally (often preceding cells with
header information), or in other formats.

Until user agents...
In most of the checkpoints, content developers are asked to ensure the accessibility
of their pages and sites. However, there are accessibility needs that would be more
appropriately met by user agents [p. 30] (including assistive technologies [p. 25]).
As of the publication of this document, not all user agents or assistive technologies
provide the accessibility control users require (e.g., some user agents may not
allow users to turn off blinking content, or some screen readers may not handle
tables well). Checkpoints that contain the phrase "until user agents ..." require
content developers to provide additional support for accessibility until most user
agents readily available to their audience include the necessary accessibility
features. Note. The W3C WAI Web site (refer to [WAI-UA-SUPPORT] [p. 33])
provides information about user agent support for accessibility features. Content
developers are encouraged to consult this page regularly for updated information.

User agent
Software to access Web content, including desktop graphical browsers, text
browsers, voice browsers, mobile phones, multimedia players, plug-ins, and some
software assistive technologies used in conjunction with browsers such as screen
readers, screen magnifiers, and voice recognition software.

Acknowledgments
Web Content Guidelines Working Group Co-Chairs:

Chuck Letourneau, Starling Access Services
Gregg Vanderheiden, Trace Research and Development

175

W3C Team contacts:
Judy Brewer and Daniel Dardailler

We wish to thank the following people who have contributed their time and valuable
comments to shaping these guidelines:

Harvey Bingham, Kevin Carey, Chetz Colwell, Neal Ewers, Geoff Freed, Al Gilman,
Larry Goldberg, Jon Gunderson, Eric Hansen, Phill Jenkins, Leonard Kasday,
George Kerscher, Marja-Riitta Koivunen, Josh Krieger, Scott Luebking, William
Loughborough, Murray Maloney, Charles McCathieNevile, MegaZone (Livingston
Enterprises), Masafumi Nakane, Mark Novak, Charles Oppermann, Mike Paciello,
David Pawson, Michael Pieper, Greg Rosmaita, Liam Quinn, Dave Raggett, T.V.
Raman, Robert Savellis, Jutta Treviranus, Steve Tyler, Jaap van Lelieveld, and
Jason White

The original draft of this document is based on "The Unified Web Site Accessibility
Guidelines" ([UWSAG] [p. 33]) compiled by the Trace R & D Center at the University of
Wisconsin. That document includes a list of additional contributors.

References
For the latest version of any W3C specification please consult the list of W3C Technical
Reports.
[CSS1]
"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds., 17 December 1996,
revised 11 January 1999. The CSS1 Recommendation is:
http://www.w3.org/TR/1999/REC-CSS1-19990111. The latest version of CSS1 is
available at: http://www.w3.org/TR/REC-CSS1.
[CSS2]
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs, eds., 12
May 1998. The CSS2 Recommendation is: http://www.w3.org/TR/1998/REC-CSS2-
19980512. The latest version of CSS2 is available at: http://www.w3.org/TR/REC-
CSS2.
[DOM1]
"Document Object Model (DOM) Level 1 Specification", V. Apparao, S. Byrne, M.
Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, and
L. Wood, eds., 1 October 1998. The DOM Level 1 Recommendation is:
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001. The latest version of DOM
Level 1 is available at: http://www.w3.org/TR/REC-DOM-Level-1
[HTML40]
"HTML 4.0 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds., 17
December 1997, revised 24 April 1998. The HTML 4.0 Recommendation is:
http://www.w3.org/TR/1998/REC-html40-19980424. The latest version of HTML 4.0 is
available at: http://www.w3.org/TR/REC-html40.
[HTML32]
"HTML 3.2 Recommendation", D. Raggett, ed., 14 January 1997. The latest
version of HTML 3.2 is available at: http://www.w3.org/TR/REC-html32.
[MATHML]
"Mathematical Markup Language", P. Ion and R. Miner, eds., 7 April 1998. The MathML
1.0 Recommendation is: http://www.w3.org/TR/1998/REC-MathML-19980407. The
latest version of MathML 1.0 is available at: http://www.w3.org/TRREC-MathML.
[PNG]
"PNG (Portable Network Graphics) Specification", T. Boutell, ed., T. Lane, contributing

176

ed., 1 October 1996. The latest version of PNG 1.0 is: http://www.w3.org/TR/REC-png.
[RDF]
"Resource Description Framework (RDF) Model and Syntax Specification", O. Lassila,
R. Swick, eds., 22 February 1999. The RDF Recommendation is:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222. The latest version of RDF 1.0 is
available at:
http://www.w3.org/TR/REC-rdf-syntax
[RFC2068]
"HTTP Version 1.1", R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, and T.
Berners-Lee, January 1997.
[SMIL]
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", P. Hoschka,
ed., 15 June 1998. The SMIL 1.0 Recommendation is:
http://www.w3.org/TR/1998/REC-smil-19980615 The latest version of SMIL 1.0 is
available at: http://www.w3.org/TR/REC-smil
[TECHNIQUES]
"Techniques for Web Content Accessibility Guidelines 1.0", W. Chisholm, G.
Vanderheiden, I. Jacobs, eds. This document explains how to implement the
checkpoints defined in "Web Content Accessibility Guidelines 1.0". The latest draft of
the techniques is available at: http://www.w3.org/TR/WAI-WEBCONTENT-TECHS/
[WAI-AUTOOLS]
"Authoring Tool Accessibility Guidelines", J. Treviranus, J. Richards, I. Jacobs, C.
McCathieNevile, eds. The latest Working Draft of these guidelines for designing
accessible authoring tools is available at: http://www.w3.org/TR/WAI-AUTOOLS/
[WAI-UA-SUPPORT]
This page documents known support by user agents (including assistive technologies)
of some accessibility features listed in this document. The page is available at:
http://www.w3.org/WAI/Resources/WAI-UA-Support
[WAI-USERAGENT]
"User Agent Accessibility Guidelines", J. Gunderson and I. Jacobs, eds. The latest
Working Draft of these guidelines for designing accessible user agents is available at:
http://www.w3.org/TR/WAI-USERAGENT/
[WCAG-ICONS]
Information about conformance icons for this document and how to use them is
available at http://www.w3.org/WAI/WCAG1-Conformance.html
[UWSAG]
"The Unified Web Site Accessibility Guidelines", G. Vanderheiden, W. Chisholm, eds.
The Unified Web Site Guidelines were compiled by the Trace R & D Center at the
University of Wisconsin under funding from the National Institute on Disability and
Rehabilitation Research (NIDRR), U.S. Dept. of Education. This document is available
at: http://www.tracecenter.org/docs/html_guidelines/version8.htm
[XML]
"Extensible Markup Language (XML) 1.0.", T. Bray, J. Paoli, C.M. Sperberg-McQueen,
eds., 10 February 1998. The XML 1.0 Recommendation is:
http://www.w3.org/TR/1998/REC-xml-19980210. The latest version of XML 1.0 is
available at: http://www.w3.org/TR/REC-xml

177

178

APPENDIX II

Web Content Accessibility Guidelines (WCAG) 2.0
W3C Recommendation 11 December 2008
This version:

http://www.w3.org/TR/2008/REC-WCAG20-20081211/
Latest version:

http://www.w3.org/TR/WCAG20/
Previous version:

http://www.w3.org/TR/2008/PR-WCAG20-20081103/
Editors:

Ben Caldwell, Trace R&D Center, University of Wisconsin-Madison Michael
Cooper, W3C Loretta Guarino Reid, Google, Inc. Gregg Vanderheiden, Trace R&D
Center, University of Wisconsin-Madison

Previous Editors:
Wendy Chisholm (until July 2006 while at W3C) John Slatin (until June 2006 while
at Accessibility Institute, University of Texas at Austin) Jason White (until June
2005 while at University of Melbourne)

Please refer to the errata for this document, which may include normative corrections.
See also translations.

This document is also available in non-normative formats, available from Alternate
Versions of Web Content Accessibility Guidelines 2.0.

Copyright © 2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract
Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of
recommendations for making Web content more accessible. Following these guidelines
will make content accessible to a wider range of people with disabilities, including
blindness and low vision, deafness and hearing loss, learning disabilities, cognitive
limitations, limited movement, speech disabilities, photosensitivity and combinations of
these. Following these guidelines will also often make your Web content more usable
to users in general.
WCAG 2.0 success criteria are written as testable statements that are not technology-
specific. Guidance about satisfying the success criteria in specific technologies, as well
as general information about interpreting the success criteria, is provided in separate

Web Content Accessibility Guidelines 1.0
W3C Recommendation 5-May-1999
This version:

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
(plain text, PostScript, PDF, gzip tar file of HTML, zip archive of HTML)

Latest version:
http://www.w3.org/TR/WAI-WEBCONTENT

Previous version:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324

Editors:
Wendy Chisholm, Trace R & D Center, University of Wisconsin -- Madison
Gregg Vanderheiden, Trace R & D Center, University of Wisconsin -- Madison
Ian Jacobs, W3C

Copyright W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract
These guidelines explain how to make Web content [p. 26] accessible to people with
disabilities. The guidelines are intended for all Web content developers [p. 26] (page
authors and site designers) and for developers of authoring tools [p. 25] . The
primary goal of these guidelines is to promote accessibility. However, following them
will also make Web content more available to all users, whatever user agent [p. 30]
they are using (e.g., desktop browser, voice browser, mobile phone,
automobile-based personal computer, etc.) or constraints they may be operating
under (e.g., noisy surroundings, under- or over-illuminated rooms, in a hands-free
environment, etc.). Following these guidelines will also help people find information
on the Web more quickly. These guidelines do not discourage content developers
from using images, video, etc., but rather explain how to make multimedia content
more accessible to a wide audience.

This is a reference document for accessibility principles and design ideas. Some
of the strategies discussed in this document address certain Web internationalization
and mobile access concerns. However, this document focuses on accessibility and
does not fully address the related concerns of other W3C Activities. Please consult
the W3C Mobile Access Activity home page and the W3C Internationalization
Activity home page for more information.

1

Web Content Accessibility Guidelines 1.0

179

documents. See Web Content Accessibility Guidelines (WCAG) Overview for an
introduction and links to WCAG technical and educational material.
WCAG 2.0 succeeds Web Content Accessibility Guidelines 1.0 [WCAG10], which was
published as a W3C Recommendation May 1999. Although it is possible to conform
either to WCAG 1.0 or to WCAG 2.0 (or both), the W3C recommends that new and
updated content use WCAG 2.0. The W3C also recommends that Web accessibility
policies reference WCAG 2.0.

Status of this Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index
at http://www.w3.org/TR/.
This is the Web Content Accessibility Guidelines (WCAG) 2.0 W3C Recommendation
from the Web Content Accessibility Guidelines Working Group.
This document has been reviewed by W3C Members, by software developers, and by
other W3C groups and interested parties, and is endorsed by the Director as a W3C
Recommendation. It is a stable document and may be used as reference material or
cited from another document. W3C's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment. This enhances
the functionality and interoperability of the Web.
WCAG 2.0 is supported by the associated non-normative documents, Understanding
WCAG 2.0 and Techniques for WCAG 2.0. Although those documents do not have the
formal status that WCAG 2.0 itself has, they provide information important to
understanding and implementing WCAG.
The Working Group requests that any comments be made using the provided online
comment form. If this is not possible, comments can also be sent to public-comments-
wcag20@w3.org. The archives for the public comments list are publicly available.
Comments received on the WCAG 2.0 Recommendation cannot result in changes to
this version of the guidelines, but may be addressed in errata or future versions of
WCAG. The Working Group does not plan to make formal responses to comments.
Archives of the WCAG WG mailing list discussions are publicly available, and future
work undertaken by the Working Group may address comments received on this
document.
This document has been produced as part of the W3C Web Accessibility Initiative
(WAI). The goals of the WCAG Working Group are discussed in the WCAG Working
Group charter. The WCAG Working Group is part of the WAI Technical Activity.
This document was produced by a group operating under the 5 February 2004 W3C
Patent Policy. W3C maintains a public list of any patent disclosures made in
connection with the deliverables of the group; that page also includes instructions for
disclosing a patent. An individual who has actual knowledge of a patent which the
individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

180

Table of Contents
Introduction

WCAG 2.0 Layers of Guidance
WCAG 2.0 Supporting Documents
Important Terms in WCAG 2.0

WCAG 2.0 Guidelines
1 Perceivable

1.1 Provide text alternatives for any non-text content so that it can be
changed into other forms people need, such as large print, braille, speech,
symbols or simpler language.
1.2 Provide alternatives for time-based media.
1.3 Create content that can be presented in different ways (for
examplesimpler layout) without losing information or structure.
1.4 Make it easier for users to see and hear content including separating
foreground from background.

2 Operable
2.1 Make all functionality available from a keyboard.
2.2 Provide users enough time to read and use content. 2.3 Do not design
content in a way that is known to cause seizures.
2.4 Provide ways to help users navigate, find content, and determine where
they are.

3 Understandable
3.1 Make text content readable and understandable.
3.2 Make Web pages appear and operate in predictable ways.
3.3 Help users avoid and correct mistakes.

4 Robust
4.1 Maximize compatibility with current and future user agents, including
assistive technologies.

Conformance
Conformance Requirements
Conformance Claims (Optional)
Statement of Partial Conformance - Third Party Content
Statement of Partial Conformance - Language

Appendix A:
Glossary (Normative)
Appendix B: Acknowledgments
Appendix C: References

Introduction
This section is informative.
Web Content Accessibility Guidelines (WCAG) 2.0 defines how to make Web content
more accessible to people with disabilities. Accessibility involves a wide range of
disabilities, including visual, auditory, physical, speech, cognitive, language, learning,
and neurological disabilities. Although these guidelines cover a wide range of issues,

181

they are not able to address the needs of people with all types, degrees, and
combinations of disability. These guidelines also make Web content more usable by
older individuals with changing abilities due to aging and often improve usability for
users in general.
WCAG 2.0 is developed through the W3C process in cooperation with individuals and
organizations around the world, with a goal of providing a shared standard for Web
content accessibility that meets the needs of individuals, organizations, and
governments internationally. WCAG 2.0 builds on WCAG 1.0 [WCAG10] and is
designed to apply broadly to different Web technologies now and in the future, and to
be testable with a combination of automated testing and human evaluation. For an
introduction to WCAG, see the Web Content Accessibility Guidelines (WCAG)
Overview.
Web accessibility depends not only on accessible content but also on accessible Web
browsers and other user agents. Authoring tools also have an important role in Web
accessibility. For an overview of how these components of Web development and
interaction work together, see:

• Essential Components of Web Accessibility
• User Agent Accessibility Guidelines (UAAG) Overview
• Authoring Tool Accessibility Guidelines (ATAG) Overview

WCAG 2.0 Layers of Guidance
The individuals and organizations that use WCAG vary widely and include Web
designers and developers, policy makers, purchasing agents, teachers, and students.
In order to meet the varying needs of this audience, several layers of guidance are
provided including overall principles, general guidelines, testable success criteria and a
rich collection of sufficient techniques, advisory techniques, and documented common
failures with examples, resource links and code.
Principles - At the top are four principles that provide the foundation for Web
accessibility: perceivable, operable, understandable, and robust. See also
Understanding the Four Principles of Accessibility.
Guidelines - Under the principles are guidelines. The 12 guidelines provide the basic
goals that authors should work toward in order to make content more accessible to
users with different disabilities. The guidelines are not testable, but provide the
framework and overall objectives to help authors understand the success criteria and
better implement the techniques.
Success Criteria - For each guideline, testable success criteria are provided to allow
WCAG 2.0 to be used where requirements and conformance testing are necessary
such as in design specification, purchasing, regulation, and contractual agreements. In
order to meet the needs of different groups and different situations, three levels of
conformance are defined: A (lowest), AA, and AAA (highest). Additional information on
WCAG levels can be found in Understanding Levels of Conformance.
Sufficient and Advisory Techniques - For each of the guidelines and success criteria
in the WCAG 2.0 document itself, the working group has also documented a wide
variety of techniques. The techniques are informative and fall into two categories: those
that are sufficient for meeting the success criteria and those that are advisory. The
advisory techniques go beyond what is required by the individual success criteria and

182

allow authors to better address the guidelines. Some advisory techniques address
accessibility barriers that are not covered by the testable success criteria. Where
common failures are known, these are also documented. See also Sufficient and
Advisory Techniques in Understanding WCAG 2.0.
All of these layers of guidance (principles, guidelines, success criteria, and sufficient
and advisory techniques) work together to provide guidance on how to make content
more accessible. Authors are encouraged to view and apply all layers that they are
able to, including the advisory techniques, in order to best address the needs of the
widest possible range of users.
Note that even content that conforms at the highest level (AAA) will not be accessible
to individuals with all types, degrees, or combinations of disability, particularly in the
cognitive language and learning areas. Authors are encouraged to consider the full
range of techniques, including the advisory techniques, as well as to seek relevant
advice about current best practice to ensure that Web content is accessible, as far as
possible, to this community. Metadata may assist users in finding content most suitable
for their needs.

WCAG 2.0 Supporting Documents
The WCAG 2.0 document is designed to meet the needs of those who need a stable,
referenceable technical standard. Other documents, called supporting documents, are
based on the WCAG 2.0 document and address other important purposes, including
the ability to be updated to describe how WCAG would be applied with new
technologies.
Supporting documents include:
1. How to Meet WCAG 2.0 - A customizable quick reference to WCAG 2.0 that

includes all of the guidelines, success criteria, and techniques for authors to use as
they are developing and evaluating Web content.

2. Understanding WCAG 2.0 - A guide to understanding and implementing WCAG
2.0. There is a short "Understanding" document for each guideline and success
criterion in WCAG 2.0 as well as key topics.

3. Techniques for WCAG 2.0 - A collection of techniques and common failures, each
in a separate document that includes a description, examples, code and tests.

4. The WCAG 2.0 Documents - A diagram and description of how the technical
documents are related and linked.

See Web Content Accessibility Guidelines (WCAG) Overview for a description of the
WCAG 2.0 supporting material, including education resources related to WCAG 2.0.
Additional resources covering topics such as the business case for Web accessibility,
planning implementation to improve the accessibility of Web sites, and accessibility
policies are listed in WAI Resources.

Important Terms in WCAG 2.0
WCAG 2.0 includes three important terms that are different from WCAG 1.0. Each of
these is introduced briefly below and defined more fully in the glossary.

183

Web Page
It is important to note that, in this standard, the term "Web page" includes much more
than static HTML pages. It also includes the increasingly dynamic Web pages that are
emerging on the Web, including "pages" that can present entire virtual interactive
communities. For example, the term "Web page" includes an immersive, interactive
movie-like experience found at a single URI. For more information, see Understanding
"Web Page".
Programmatically Determined
Several success criteria require that content (or certain aspects of content) can be
"programmatically determined." This means that the content is delivered in such a way
that user agents, including assistive technologies, can extract and present this
information to users in different modalities. For more information, see Understanding
Programmatically Determined.
Accessibility Supported
Using a technology in a way that is accessibility supported means that it works with
assistive technologies (AT) and the accessibility features of operating systems,
browsers, and other user agents. Technology features can only be relied upon to
conform to WCAG 2.0 success criteria if they are used in a way that is "accessibility
supported". Technology features can be used in ways that are not accessibility
supported (do not work with assistive technologies, etc.) as long as they are not relied
upon to conform to any success criterion (i.e., the same information or functionality is
also available another way that is supported).
The definition of "accessibility supported" is provided in the Appendix A: Glossary
section of these guidelines. For more information, see Understanding Accessibility
Support.

WCAG 2.0 Guidelines
This section is normative.

Principle 1: Perceivable - Information and user interface components
must be presentable to users in ways they can perceive.
Guideline 1.1 Text Alternatives: Provide text alternatives for any non-text content so
that it can be changed into other forms people need, such as large print, braille,
speech, symbols or simpler language. Understanding Guideline 1.1 68

1.1.1 Non-text Content: All non-text content that is presented to the user has a text
alternative that serves the equivalent purpose, except for the situations listed below.
(Level A) 69

68 Any Guideline provides a link to help understanding the Guideline; but since this appendix does not

include active links, we are not including this link in the following Guidelines.

69 Any Success Criteria provide a box with two links to help on how meeting and understanding the

Success Criteria; since this appendix does not include active links, we do not include this box in the

following Success Criteria.

Guideline 1.1 Text Alternatives: Provide
text alternatives for any non-text content
so that it can be changed into other forms
people need, such as large print, braille,
speech, symbols or simpler language.

Understanding Guideline 1.1

1.1.1 Non-text Content: All non-text content that is
presented to the user has a text alternative that serves the
equivalent purpose, except for the situations listed below.
(Level A)

Controls, Input: If non-text content is a control or
accepts user input, then it has a name that describes its
purpose. (Refer to Guideline 4.1 for additional
requirements for controls and content that accepts user
input.)
Time-Based Media: If non-text content is time-based
media, then text alternatives at least provide descriptive
identification of the non-text content. (Refer to Guideline
1.2 for additional requirements for media.)
Test: If non-text content is a test or exercise that would
be invalid if presented in text, then text alternatives at
least provide descriptive identification of the non-text
content.
Sensory: If non-text content is primarily intended to
create a specific sensory experience, then text
alternatives at least provide descriptive identification of
the non-text content.
CAPTCHA: If the purpose of non-text content is to
confirm that content is being accessed by a person rather
than a computer, then text alternatives that identify and
describe the purpose of the non-text content are
provided, and alternative forms of CAPTCHA using
output modes for different types of sensory perception
are provided to accommodate different disabilities.
Decoration, Formatting, Invisible: If non-text
content is pure decoration, is used only for visual
formatting, or is not presented to users, then it is
implemented in a way that it can be ignored by assistive
technology.

How to Meet 1.1.1
Understanding 1.1.1

Guideline 1.2 Time-based Media: Provide
alternatives for time-based media.

Understanding Guideline 1.2

WCAG 2.0Page 12 Page 7

184

• Controls, Input: If non-text content is a control or accepts user input, then it has a
name that describes its purpose. (Refer to Guideline 4.1 for additional
requirements for controls and content that accepts user input.)

• Time-Based Media: If non-text content is time-based media, then text alternatives
at least provide descriptive identification of the non-text content. (Refer to
Guideline 1.2 for additional requirements for media.)

• Test: If non-text content is a test or exercise that would be invalid if presented in
text, then text alternatives at least provide descriptive identification of the non-text
content.

• Sensory: If non-text content is primarily intended to create a specific sensory
experience, then text alternatives at least provide descriptive identification of the
non-text content.

• CAPTCHA: If the purpose of non-text content is to confirm that content is being
accessed by a person rather than a computer, then text alternatives that identify
and describe the purpose of the non-text content are provided, and alternative
forms of CAPTCHA using output modes for different types of sensory perception
are provided to accommodate different disabilities. Decoration, Formatting,
Invisible: If non-text content is pure decoration, is used only for visual formatting,
or is not presented to users, then it is implemented in a way that it can be ignored
by assistive technology.

Guideline 1.2 Time-based Media: Provide alternatives for time-based media.

1.2.1 Audio-only and Video-only (Prerecorded): For prerecorded audio-only and
prerecorded video-only media, the following are true, except when the audio or video
is a media alternative for text and is clearly labeled as such: (Level A)
• Prerecorded Audio-only: An alternative for time- based media is provided that

presents equivalent information for prerecorded audio-only content.
• Prerecorded Video-only: Either an alternative for time-based media or an audio

track is provided that presents equivalent information for prerecorded video- only
content.

1.2.2 Captions (Prerecorded): Captions are provided for all prerecorded audio
content in synchronized media, except when the media is a media alternative for text
and is clearly labeled as such. (Level A)
1.2.3 Audio Description or Media Alternative (Prerecorded): An alternative for
time-based media or audio description of the prerecorded video content is provided
for synchronized media, except when the media is a media alternative for text and is
clearly labeled as such. (Level A)
1.2.4 Captions (Live): Captions are provided for all live audio content in
synchronized media. (Level AA)
1.2.5 Audio Description (Prerecorded): Audio description is provided for all
prerecorded video content in synchronized media. (Level AA)
1.2.6 Sign Language (Prerecorded): Sign language interpretation is provided for all
prerecorded audio content in synchronized media. (Level AAA)
1.2.7 Extended Audio Description (Prerecorded): Where pauses in foreground
audio are insufficient to allow audio descriptions to convey the sense of the video,
extended audio description is provided for all prerecorded video content in
synchronized media. (Level AAA)

185

1.2.8 Media Alternative (Prerecorded): An alternative for time-based media is
provided for all prerecorded synchronized media and for all prerecorded video-only
media. (Level AAA)
1.2.9 Audio-only (Live): An alternative for time-based media that presents
equivalent information for live audio-only content is provided. (Level AAA)

Guideline 1.3 Adaptable: Create content that can be presented in different ways (for
example simpler layout) without losing information or structure.

1.3.1 Info and Relationships: Information, structure, and relationships conveyed
through presentation can be programmatically determined or are available in text.
(Level A)
1.3.2 Meaningful Sequence: When the sequence in which content is presented
affects its meaning, a correct reading sequence can be programmatically determined.
(Level A)
1.3.3 Sensory Characteristics: Instructions provided for understanding and
operating content do not rely solely on sensory characteristics of components such
as shape, size, visual location, orientation, or sound. (Level A)
Note: For requirements related to color, refer to Guideline 1.4.

Guideline 1.4 Distinguishable: Make it easier for users to see and hear content
including separating foreground from background.

1.4.1 Use of Color: Color is not used as the only visual means of conveying
information, indicating an action, prompting a response, or distinguishing a visual
element. (Level A)
Note: This success criterion addresses color perception specifically. Other forms of
perception are covered in Guideline 1.3 including programmatic access to color and
other visual presentation coding.
1.4.2 Audio Control: If any audio on a Web page plays automatically for more than 3
seconds, either a mechanism is available to pause or stop the audio, or a mechanism
is available to control audio volume independently from the overall system volume
level. (Level A)
Note: Since any content that does not meet this success criterion can interfere with a
user's ability to use the whole page, all content on the Web page (whether or not it is
used to meet other success criteria) must meet this success criterion. See
Conformance Requirement 5: Non- Interference.
1.4.3 Contrast (Minimum): The visual presentation of text and images of text has a
contrast ratio of at least 4.5:1, except for the following: (Level AA)
• Large Text: Large-scale text and images of large- scale text have a contrast ratio

of at least 3:1; Incidental: Text or images of text that are part of an inactive user
interface component, that are pure decoration, that are not visible to anyone, or
that are part of a picture that contains significant other visual content, have no
contrast requirement.

• Logotypes: Text that is part of a logo or brand name has no minimum contrast
requirement.

1.4.4 Resize text: Except for captions and images of text, text can be resized without
assistive technology up to 200 percent without loss of content or functionality. (Level
AA)

186

1.4.5 Images of Text: If the technologies being used can achieve the visual
presentation, text is used to convey information rather than images of text except for
the following: (Level AA)
• Customizable: The image of text can be visually customized to the user's

requirements;
• Essential: A particular presentation of text is essential to the information being

conveyed.
Note: Logotypes (text that is part of a logo or brand name)

1.4.6 Contrast (Enhanced): The visual presentation of text and images of text has a
contrast ratio of at least 7:1, except for the following: (Level AAA)
• Large Text: Large-scale text and images of large- scale text have a contrast ratio

of at least 4.5:1; Incidental: Text or images of text that are part of an inactive user
interface component, that are pure decoration, that are not visible to anyone, or
that are part of a picture that contains significant other visual content, have no
contrast requirement.

• Logotypes: Text that is part of a logo or brand name has no minimum contrast
requirement.

1.4.7 Low or No Background Audio: For prerecorded audio-only content that (1)
contains primarily speech in the foreground, (2) is not an audio CAPTCHA or audio
logo, and (3) is not vocalization intended to be primarily musical expression such as
singing or rapping, at least one of the following is true: (Level AAA)
• No Background: The audio does not contain background sounds.
• Turn Off: The background sounds can be turned off.
• 20 dB: The background sounds are at least 20 decibels lower than the foreground

speech content, with the exception of occasional sounds that last for only one or
two seconds.

Note: Per the definition of "decibel," background sound that meets this requirement
will be approximately four times quieter than the foreground speech content.
1.4.8 Visual Presentation: For the visual presentation of blocks of text, a
mechanism is available to achieve the following: (Level AAA)
1. Foreground and background colors can be selected by the user.
2. Width is no more than 80 characters or glyphs (40 if CJK).
3. Text is not justified (aligned to both the left and the right margins).
4. Line spacing (leading) is at least space-and-a-half within paragraphs, and
paragraph spacing is at least 1.5 times larger than the line spacing.
5. Text can be resized without assistive technology up to 200 percent in a way that
does not require the user to scroll horizontally to read a line of text on a full-screen
window.

1.4.9 Images of Text (No Exception): Images of text are only used for pure
decoration or where a particular presentation of text is essential to the information
being conveyed. (Level AAA)
Note: Logotypes (text that is part of a logo or brand name) are considered essential.

Principle 2: Operable - User interface components and navigation
must be operable.
Guideline 2.1 Keyboard Accessible: Make all functionality available from a keyboard

187

2.1.1 Keyboard: All functionality of the content is operable through a keyboard
interface without requiring specific timings for individual keystrokes, except where the
underlying function requires input that depends on the path of the user's movement
and not just the endpoints. (Level A)
Note 1: This exception relates to the underlying function, not the input technique. For
example, if using handwriting to enter text, the input technique (handwriting) requires
path- dependent input but the underlying function (text input) does not.
Note 2: This does not forbid and should not discourage providing mouse input or
other input methods in addition to keyboard operation.
2.1.2 No Keyboard Trap: If keyboard focus can be moved to a component of the
page using a keyboard interface, then focus can be moved away from that
component using only a keyboard interface, and, if it requires more than unmodified
arrow or tab keys or other standard exit methods, the user is advised of the method
for moving focus away. (Level A)
Note: Since any content that does not meet this success criterion can interfere with a
user's ability to use the whole page, all content on the Web page (whether it is used
to meet other success criteria or not) must meet this success criterion. See
Conformance Requirement 5: Non- Interference.
2.1.3 Keyboard (No Exception): All functionality of the content is operable through a
keyboard interface without requiring specific timings for individual keystrokes. (Level
AAA)
Guideline 2.2 Enough Time: Provide users enough time to read and use content.

2.2.1 Timing Adjustable: For each time limit that is set by the content, at least one
of the following is true: (Level A)
• Turn off: The user is allowed to turn off the time limit before encountering it; or

Adjust: The user is allowed to adjust the time limit before encountering it over a
wide range that is at least ten times the length of the default setting; or

• Extend: The user is warned before time expires and given at least 20 seconds to
extend the time limit with a simple action (for example, "press the space bar"), and
the user is allowed to extend the time limit at least ten times; or

• Real-time Exception: The time limit is a required part of a real-time event (for
example, an auction), and no alternative to the time limit is possible; or

• Essential Exception: The time limit is essential and extending it would invalidate
the activity; or

• 20 Hour Exception: The time limit is longer than 20 hours.
Note: This success criterion helps ensure that users can complete tasks without
unexpected changes in content or context that are a result of a time limit. This
success criterion should be considered in conjunction with Success Criterion 3.2.1,
which puts limits on changes of content or context as a result of user action.
2.2.2 Pause, Stop, Hide: For moving, blinking, scrolling, or auto-updating
information, all of the following are true: (Level A)
• Moving, blinking, scrolling: For any moving, blinking or scrolling information that

(1) starts automatically, (2) lasts more than five seconds, and (3) is presented in
parallel with other content, there is a mechanism for the user to pause, stop, or
hide it unless the movement, blinking, or scrolling is part of an activity where it is
essential; and

188

• Auto-updating: For any auto-updating information that (1) starts automatically
and (2) is presented in parallel with other content, there is a mechanism for the
user to pause, stop, or hide it or to control the frequency of the update unless the
auto-updating is part of an activity where it is essential.

Note 1: For requirements related to flickering or flashing content, refer to Guideline
2.3.
Note 2: Since any content that does not meet this success criterion can interfere with
a user's ability to use the whole page, all content on the Web page (whether it is used
to meet other success criteria or not) must meet this success criterion. See
Conformance Requirement 5: Non- Interference.
Note 3: Content that is updated periodically by software or that is streamed to the
user agent is not required to preserve or present information that is generated or
received between the initiation of the pause and resuming presentation, as this may
not be technically possible, and in many situations could be misleading to do so.
Note 4: An animation that occurs as part of a preload phase or similar situation can
be considered essential if interaction cannot occur during that phase for all users and
if not indicating progress could confuse users or cause them to think that content was
frozen or broken.
2.2.3 No Timing: Timing is not an essential part of the event or activity presented by
the content, except for non- interactive synchronized media and real-time events.
(Level AAA)
2.2.4 Interruptions: Interruptions can be postponed or suppressed by the user,
except interruptions involving an emergency. (Level AAA)
2.2.5 Re-authenticating: When an authenticated session expires, the user can
continue the activity without loss of data after re-authenticating. (Level AAA)
Guideline 2.3 Seizures: Do not design content in a way that is known to cause
seizures.

2.3.1 Three Flashes or Below Threshold: Web pages do not contain anything that
flashes more than three times in any one second period, or the flash is below the
general flash and red flash thresholds. (Level A)
Note: Since any content that does not meet this success criterion can interfere with a
user's ability to use the whole page, all content on the Web page (whether it is used
to meet other success criteria or not) must meet this success criterion. See
Conformance Requirement 5: Non- Interference
2.3.2 Three Flashes: Web pages do not contain anything that flashes more than
three times in any one second period. (Level AAA)
Guideline 2.4 Navigable: Provide ways to help users navigate, find content, and
determine where they are.

2.4.1 Bypass Blocks: A mechanism is available to bypass blocks of content that are
repeated on multiple Web pages. (Level A)
2.4.2 Page Titled: Web pages have titles that describe topic or purpose. (Level A)
2.4.3 Focus Order: If a Web page can be navigated sequentially and the navigation
sequences affect meaning or operation, focusable components receive focus in an
order that preserves meaning and operability. (Level A)

189

2.4.4 Link Purpose (In Context): The purpose of each link can be determined from
the link text alone or from the link text together with its programmatically determined
link context, except where the purpose of the link would be ambiguous to users in
general. (Level A)
2.4.5 Multiple Ways: More than one way is available to locate a Web page within a
set of Web pages except where the Web Page is the result of, or a step in, a process.
(Level AA)
2.4.6 Headings and Labels: Headings and labels describe topic or purpose. (Level
AA)
2.4.7 Focus Visible: Any keyboard operable user interface has a mode of operation
where the keyboard focus indicator is visible. (Level AA)
2.4.8 Location: Information about the user's location within a set of Web pages is
available. (Level AAA)
2.4.9 Link Purpose (Link Only): A mechanism is available to allow the purpose of
each link to be identified from link text alone, except where the purpose of the link
would be ambiguous to users in general. (Level AAA)
2.4.10 Section Headings: Section headings are used to organize the content. (Level
AAA)
Note 1: "Heading" is used in its general sense and includes titles and other ways to
add a heading to different types of content.
Note 2: This success criterion covers sections within writing, not user interface
components. User Interface components are covered under Success Criterion 4.1.2.

Principle 3: Understandable - Information and the operation of user
interface must be understandable.
Guideline 3.1 Readable: Make text content readable and understandable.

3.1.1 Language of Page: The default human language of each Web page can be
programmatically determined. (Level A)
3.1.2 Language of Parts: The human language of each passage or phrase in the
content can be programmatically determined except for proper names, technical
terms, words of indeterminate language, and words or phrases that have become
part of the vernacular of the immediately surrounding text. (Level AA)
3.1.3 Unusual Words: A mechanism is available for identifying specific definitions of
words or phrases used in an unusual or restricted way, including idioms and jargon.
(Level AAA)
3.1.4 Abbreviations: A mechanism for identifying the expanded form or meaning of
abbreviations is available. (Level AAA)
3.1.5 Reading Level: When text requires reading ability more advanced than the
lower secondary education level after removal of proper names and titles,
supplemental content, or a version that does not require reading ability more
advanced than the lower secondary education level, is available. (Level AAA)
3.1.6 Pronunciation: A mechanism is available for identifying specific pronunciation
of words where meaning of the words, in context, is ambiguous without knowing the

190

pronunciation. (Level AAA)
Guideline 3.2 Predictable: Make Web pages appear and operate in predictable ways.

3.2.1 On Focus: When any component receives focus, it does not initiate a change
of context. (Level A)
3.2.2 On Input: Changing the setting of any user interface component does not
automatically cause a change of context unless the user has been advised of the
behavior before using the component. (Level A)
3.2.3 Consistent Navigation: Navigational mechanisms that are repeated on
multiple Web pages within a set of Web pages occur in the same relative order each
time they are repeated, unless a change is initiated by the user. (Level AA)
3.2.4 Consistent Identification: Components that have the same functionality within
a set of Web pages are identified consistently. (Level AA)
3.2.5 Change on Request: Changes of context are initiated only by user request or
a mechanism is available to turn off such changes. (Level AAA) component does not
automatically cause a change of context unless the user has been advised of the
behavior before using the component. (Level A)
3.2.3 Consistent Navigation: Navigational mechanisms that are repeated on
multiple Web pages within a set of Web pages occur in the same relative order each
time they are repeated, unless a change is initiated by the user. (Level AA)
3.2.4 Consistent Identification: Components that have the same functionality within
a set of Web pages are identified consistently. (Level AA)
3.2.5 Change on Request: Changes of context are initiated only by user request or
a mechanism is available to turn off such changes. (Level AAA)
Guideline 3.3 Input Assistance: Help users avoid and correct mistakes.

3.3.1 Error Identification: If an input error is automatically detected, the item that is
in error is identified and the error is described to the user in text. (Level A)
3.3.2 Labels or Instructions: Labels or instructions are provided when content
requires user input. (Level A)
3.3.3 Error Suggestion: If an input error is automatically detected and suggestions
for correction are known, then the suggestions are provided to the user, unless it
would jeopardize the security or purpose of the content. (Level AA)
3.3.4 Error Prevention (Legal, Financial, Data): For Web pages that cause legal
commitments or financial transactions for the user to occur, that modify or delete
user- controllable data in data storage systems, or that submit user test responses, at
least one of the following is true: (Level AA)

1. Reversible: Submissions are reversible.
2. Checked: Data entered by the user is checked for input errors and the user is
provided an opportunity to correct them.
3. Confirmed: A mechanism is available for reviewing, confirming, and correcting
information before finalizing the submission.

3.3.5 Help: Context-sensitive help is available. (Level AAA)
3.3.6 Error Prevention (All): For Web pages that require the user to submit
information, at least one of the following is true: (Level AAA)

191

1. Reversible: Submissions are reversible.
2. Checked: Data entered by the user is checked for input errors and the user is
provided an opportunity to correct them.
3. Confirmed: A mechanism is available for reviewing, confirming, and correcting
information before finalizing the submission.

Principle 4: Robust - Content must be robust enough that it can be
interpreted reliably by a wide variety of user agents, including
assistive technologies.
Guideline 4.1 Compatible: Maximize compatibility with current and future user agents,
including assistive technologies

4.1.1 Parsing: In content implemented using markup languages, elements have
complete start and end tags, elements are nested according to their specifications,
elements do not contain duplicate attributes, and any IDs are unique, except where
the specifications allow these features. (Level A)
Note: Start and end tags that are missing a critical character in their formation, such
as a closing angle bracket or a mismatched attribute value quotation mark are not
complete.
4.1.2 Name, Role, Value: For all user interface components (including but not limited
to: form elements, links and components generated by scripts), the name and role
can be programmatically determined; states, properties, and values that can be set
by the user can be programmatically set; and notification of changes to these items is
available to user agents, including assistive technologies. (Level A)
Note: This success criterion is primarily for Web authors who develop or script their
own user interface components. For example, standard HTML controls already meet
this success criterion when used according to specification.

Conformance
This section is normative.

This section lists requirements for conformance to WCAG 2.0. It also gives information
about how to make conformance claims, which are optional. Finally, it describes what it
means to be accessibility supported, since only accessibility-supported ways of using
technologies can be relied upon for conformance. Understanding Conformance
includes further explanation of the accessibility-supported concept.

Conformance Requirements
In order for a Web page to conform to WCAG 2.0, all of the following conformance
requirements must be satisfied:
1. Conformance Level: One of the following levels of conformance is met in full.
• Level A: For Level A conformance (the minimum level of conformance), the Web

page satisfies all the Level A Success Criteria, or a conforming alternate version is
provided.

• Level AA: For Level AA conformance, the Web page satisfies all the Level A and

192

Level AA Success Criteria, or a Level AA conforming alternate version is provided.
• Level AAA: For Level AAA conformance, the Web page satisfies all the Level A,

Level AA and Level AAA Success Criteria, or a Level AAA conforming alternate
version is provided.

Note 1: Although conformance can only be achieved at the stated levels, authors are
encouraged to report (in their claim) any progress toward meeting success criteria from
all levels beyond the achieved level of conformance.
Note 2: It is not recommended that Level AAA conformance be required as a general
policy for entire sites because it is not possible to satisfy all Level AAA Success Criteria
for some content.
2. Full pages: Conformance (and conformance level) is for full Web page(s) only, and
cannot be achieved if part of a Web page is excluded.
Note 1: For the purpose of determining conformance, alternatives to part of a page's
content are considered part of the page when the alternatives can be obtained directly
from the page, e.g., a long description or an alternative presentation of a video. Note 2:
Authors of Web pages that cannot conform due to content outside of the author's
control may consider a Statement of Partial Conformance.
3. Complete processes: When a Web page is one of a series of Web pages
presenting a process (i.e., a sequence of steps that need to be completed in order to
accomplish an activity), all Web pages in the process conform at the specified level or
better. (Conformance is not possible at a particular level if any page in the process
does not conform at that level or better.)

Example: An online store has a series of pages that are used to select and purchase
products. All pages in the series from start to finish (checkout) conform in order for any
page that is part of the process to conform.
4. Only Accessibility-Supported Ways of Using Technologies: Only accessibility-
supported ways of using technologies are relied upon to satisfy the success criteria.
Any information or functionality that is provided in a way that is not accessibility
supported is also available in a way that is accessibility supported. (See Understanding
accessibility support.)
5. Non-Interference: If technologies are used in a way that is not accessibility
supported, or if they are used in a non-conforming way, then they do not block the
ability of users to access the rest of the page. In addition, the Web page as a whole
continues to meet the conformance requirements under each of the following
conditions:
1. when any technology that is not relied upon is turned on in a user agent,
2. when any technology that is not relied upon is turned off in a user agent, and
3. when any technology that is not relied upon is not supported by a user agent
In addition, the following success criteria apply to all content on the page, including
content that is not otherwise relied upon to meet conformance, because failure to meet
them could interfere with any use of the page:
• 1.4.2 - Audio Control,
• 2.1.2 - No Keyboard Trap,
• 2.3.1 - Three Flashes or Below Threshold, and
• 2.2.2 - Pause, Stop, Hide.

193

Note: If a page cannot conform (for example, a conformance test page or an example
page), it cannot be included in the scope of conformance or in a conformance claim.
For more information, including examples, see Understanding Conformance
Requirements.

Conformance Claims (Optional)
Conformance is defined only for Web pages. However, a conformance claim may be
made to cover one page, a series of pages, or multiple related Web pages.
Required Components of a Conformance Claim
Conformance claims are not required. Authors can conform to WCAG 2.0 without
making a claim. However, if a conformance claim is made, then the conformance claim
must include the following information:

1. Date of the claim
2. Guidelines title, version and URI "Web Content Accessibility Guidelines 2.0 at
http://www.w3.org/TR/2008/REC-WCAG20-20081211/"
3. Conformance level satisfied: (Level A, AA or AAA)
4. A concise description of the Web pages, such as a list of URIs for which the
claim is made, including whether subdomains are included in the claim.
Note 1: The Web pages may be described by list or by an expression that describes
all of the URIs included in the claim.
Note 2: Web-based products that do not have a URI prior to installation on the
customer's Web site may have a statement that the product would conform when
installed.
5. A list of the Web content technologies relied upon.
Note: If a conformance logo is used, it would constitute a claim and must be
accompanied by the required components of a conformance claim listed above.

Optional Components of a Conformance Claim
In addition to the required components of a conformance claim above, consider
providing additional information to assist users. Recommended additional information
includes:
• A list of success criteria beyond the level of conformance claimed that have been

met. This information should be provided in a form that users can use, preferably
machine- readable metadata.

• A list of the specific technologies that are "used but not relied upon."
• A list of user agents, including assistive technologies that were used to test the

content.
• Information about any additional steps taken that go beyond the success criteria to

enhance accessibility.
• A machine-readable metadata version of the list of specific technologies that are

relied upon.
• A machine-readable metadata version of the conformance claim.

Note 1: Refer to Understanding Conformance Claims for more information and example
conformance claims.
Note 2: Refer to Understanding Metadata for more information about the use of

194

metadata in conformance claims.

Statement of Partial Conformance - Third Party Content
Sometimes, Web pages are created that will later have additional content added to
them. For example, an email program, a blog, an article that allows users to add
comments, or applications supporting user-contributed content. Another example would
be a page, such as a portal or news site, composed of content aggregated from
multiple contributors, or sites that automatically insert content from other sources over
time, such as when advertisements are inserted dynamically.
In these cases, it is not possible to know at the time of original posting what the
uncontrolled content of the pages will be. It is important to note that the uncontrolled
content can affect the accessibility of the controlled content as well. Two options are
available:
1. A determination of conformance can be made based on best knowledge. If a page of
this type is monitored and repaired (non-conforming content is removed or brought into
conformance) within two business days, then a determination or claim of conformance
can be made since, except for errors in externally contributed content which are
corrected or removed when encountered, the page conforms. No conformance claim
can be made if it is not possible to monitor or correct non- conforming content;
OR
2. A "statement of partial conformance" may be made that the page does not conform,
but could conform if certain parts were removed. The form of that statement would be,
"This page does not conform, but would conform to WCAG 2.0 at level X if the following
parts from uncontrolled sources were removed." In addition, the following would also be
true of uncontrolled content that is described in the statement of partial conformance:

a. It is not content that is under the author's control.
b. It is described in a way that users can identify (e.g., they cannot be described as
"all parts that we do not control" unless they are clearly marked as such.)

Statement of Partial Conformance – Language
A "statement of partial conformance due to language" may be made when the page
does not conform, but would conform if accessibility support existed for (all of) the
language(s) used on the page. The form of that statement would be, "This page does
not conform, but would conform to WCAG 2.0 at level X if accessibility support existed
for the following language(s):"

Appendix A: Glossary
This section is normative.
abbreviation

shortened form of a word, phrase, or name where the abbreviation has not become
part of the language

Note 1: This includes initialisms and acronyms where:
1. initialisms are shortened forms of a name or phrase made from the initial
letters of words or syllables contained in that name or phrase Note 1: Not defined
in all languages.
Example 1: SNCF is a French initialism that contains the initial letters of the
Société Nationale des Chemins de Fer, the French national railroad.

195

Example 2: ESP is an initialism for extrasensory perception.
2. acronyms are abbreviated forms made from the initial letters or parts of other
words (in a name or phrase) which may be pronounced as a word
Example: NOAA is an acronym made from the initial letters of the National
Oceanic and Atmospheric Administration in the United States.

Note 2: Some companies have adopted what used to be an initialism as their
company name. In these cases, the new name of the company is the letters (for
example, Ecma) and the word is no longer considered an abbreviation.

accessibility supported
supported by users' assistive technologies as well as the accessibility features in
browsers and other user agents To qualify as an accessibility-supported use of a
Web content technology (or feature of a technology), both 1 and 2 must be satisfied
for a Web content technology (or feature):

1. The way that the Web content technology is used must be supported by
users' assistive technology (AT). This means that the way that the technology
is used has been tested for interoperability with users' assistive technology in the
human language(s) of the content, AND
2. The Web content technology must have accessibility-supported user
agents that are available to users. This means that at least one of the following
four statements is true:

a. The technology is supported natively in widely-distributed user agents that
are also accessibility supported (such as HTML and CSS);

OR
b. The technology is supported in a widely-distributed plug-in that is also
accessibility supported;

OR
c. The content is available in a closed environment, such as a university or
corporate network, where the user agent required by the technology and used
by the organization is also accessibility supported;

OR
d. The user agent(s) that support the technology are accessibility supported
and are available for download or purchase in a way that:

• does not cost a person with a disability any more than a person without
a disability and

• is as easy to find and obtain for a person with a disability as it is for a
person without disabilities.

Note 1: The WCAG Working group and the W3C do not specify which or how
much support by assistive technologies there must be for a particular use of a
Web technology in order for it to be classified as accessibility supported. (See
Level of Assistive Technology Support Needed for "Accessibility Support".)
Note 2: Web technologies can be used in ways that are not accessibility
supported as long as they are not relied upon and the page as a whole meets the
conformance requirements, including Conformance Requirement 4: Only
Accessibility-Supported Ways of Using Technologies and Conformance
Requirement 5: Non-Interference, are met.
Note 3: When a Web Technology is used in a way that is "accessibility
supported," it does not imply that the entire technology or all uses of the
technology are supported. Most technologies, including HTML, lack support for at
least one feature or use. Pages conform to WCAG only if the uses of the
technology that are accessibility supported can be relied upon to meet WCAG

196

requirements.
Note 4: When citing Web content technologies that have multiple versions, the
version(s) supported should be specified.
Note 5: One way for authors to locate uses of a technology that are accessibility
supported would be to consult compilations of uses that are documented to be
accessibility supported. (See Understanding Accessibility-Supported Web
Technology Uses.) Authors, companies, technology vendors, or others may
document accessibility-supported ways of using Web content technologies.
However, all ways of using technologies in the documentation would need to
meet the definition of accessibility-supported Web content technologies above.

alternative for time-based media
document including correctly sequenced text descriptions of time-based visual and
auditory information and providing a means for achieving the outcomes of any time-
based interaction

Note: A screenplay used to create the synchronized media content would meet
this definition only if it was corrected to accurately represent the final
synchronized media after editing.

ambiguous to users in general
the purpose cannot be determined from the link and all information of the Web page
presented to the user simultaneously with the link (i.e., readers without disabilities
would not know what a link would do until they activated it)

Example: The word guava in the following sentence "One of the notable exports
is guava" is a link. The link could lead to a definition of guava, a chart listing the
quantity of guava exported or a photograph of people harvesting guava. Until the
link is activated, all readers are unsure and the person with a disability is not at
any disadvantage.

ASCII art
picture created by a spatial arrangement of characters or glyphs (typically from the 95
printable characters defined by ASCII).

assistive technology (as used in this document)
hardware and/or software that acts as a user agent, or along with a mainstream user
agent, to provide functionality to meet the requirements of users with disabilities that
go beyond those offered by mainstream user agents

Note 1: functionality provided by assistive technology includes alternative
presentations (e.g., as synthesized speech or magnified content), alternative
input methods (e.g., voice), additional navigation or orientation mechanisms, and
content transformations (e.g., to make tables more accessible).
Note 2: Assistive technologies often communicate data and messages with
mainstream user agents by using and monitoring APIs.
Note 3: The distinction between mainstream user agents and assistive
technologies is not absolute. Many mainstream user agents provide some
features to assist individuals with disabilities. The basic difference is that
mainstream user agents target broad and diverse audiences that usually include
people with and without disabilities. Assistive technologies target narrowly defined
populations of users with specific disabilities. The assistance provided by an
assistive technology is more specific and appropriate to the needs of its target
users. The mainstream user agent may provide important functionality to assistive
technologies like retrieving Web content from program objects or parsing markup

197

into identifiable bundles.
Example: Assistive technologies that are important in the context of this
document include the following:

• screen magnifiers, and other visual reading assistants, which are used
by people with visual, perceptual and physical print disabilities to change
text font, size, spacing, color, synchronization with speech, etc. in order
to improve the visual readability of rendered text and images;

• screen readers, which are used by people who are blind to read textual
information through synthesized speech or braille;

• text-to-speech software, which is used by some people with cognitive,
language, and learning disabilities to convert text into synthetic speech;

• speech recognition software, which may be used by people who have
some physical disabilities;

• alternative keyboards, which are used by people with certain physical
disabilities to simulate the keyboard (including alternate keyboards that
use head pointers, single switches, sip/puff and other special input
devices.);

• alternative pointing devices, which are used by people with certain
physical disabilities to simulate mouse pointing and button activations.

audio
the technology of sound reproduction
Note: Audio can be created synthetically (including speech synthesis), recorded from
real world sounds, or both.

audio description
narration added to the soundtrack to describe important visual details that cannot be
understood from the main soundtrack alone

Note 1: Audio description of video provides information about actions, characters,
scene changes, on-screen text, and other visual content.
Note 2: In standard audio description, narration is added during existing pauses in
dialogue. (See also extended audio description.)
Note 3: Where all of the video information is already provided in existing audio, no
additional audio description is necessary.
Note 4: Also called "video description" and "descriptive narration."

audio-only
a time-based presentation that contains only audio (no video and no interaction)

blinking
switch back and forth between two visual states in a way that is meant to draw
attention

Note: See also flash. It is possible for something to be large enough and blink
brightly enough at the right frequency to be also classified as a flash.

blocks of text
more than one sentence of text

CAPTCHA
initialism for "Completely Automated Public Turing test to tell Computers and Humans
Apart"

Note 1: CAPTCHA tests often involve asking the user to type in text that is
displayed in an obscured image or audio file.

198

Note 2: A Turing test is any system of tests designed to differentiate a human
from a computer. It is named after famed computer scientist Alan Turing. The
term was coined by researchers at Carnegie Mellon University. [CAPTCHA]

captions
synchronized visual and/or text alternative for both speech and non-speech audio
information needed to understand the media content

Note 1: Captions are similar to dialogue-only subtitles except captions convey not
only the content of spoken dialogue, but also equivalents for non-dialogue audio
information needed to understand the program content, including sound effects,
music, laughter, speaker identification and location.
Note 2: Closed Captions are equivalents that can be turned on and off with some
players.
Note 3: Open Captions are any captions that cannot be turned off. For example, if
the captions are visual equivalent images of text embedded in video.
Note 4: Captions should not obscure or obstruct relevant information in the video.
Note 5: In some countries, captions are called subtitles.
Note 6: Audio descriptions can be, but do not need to be, captioned since they
are descriptions of information that is already presented visually.

changes of context
major changes in the content of the Web page that, if made without user awareness,
can disorient users who are not able to view the entire page simultaneously Changes
in context include changes of:

1. user agent;
2. viewport;
3. focus;
4. content that changes the meaning of the Web page.
Note: A change of content is not always a change of context. Changes in content,
such as an expanding outline, dynamic menu, or a tab control do not necessarily
change the context, unless they also change one of the above (e.g., focus).
Example: Opening a new window, moving focus to a different component, going
to a new page (including anything that would look to a user as if they had moved
to a new page) or significantly re-arranging the content of a page are examples of
changes of context.

conformance
satisfying all the requirements of a given standard, guideline or specification

conforming alternate version
version that
1. conforms at the designated level, and
2. provides all of the same information and functionality in the same human language,
and
3. is as up to date as the non-conforming content, and
4. for which at least one of the following is true:

a. the conforming version can be reached from the non-conforming page via an
accessibility-supported mechanism, or
b. the non-conforming version can only be reached from the conforming version,
or
c. the non-conforming version can only be reached from a conforming page that
also provides a mechanism to reach the conforming version

199

Note 1: In this definition, "can only be reached" means that there is some
mechanism, such as a conditional redirect, that prevents a user from "reaching"
(loading) the non- conforming page unless the user had just come from the
conforming version.
Note 2: The alternate version does not need to be matched page for page with
the original (e.g., the conforming alternate version may consist of multiple pages).
Note 3: If multiple language versions are available, then conforming alternate
versions are required for each language offered.
Note 4: Alternate versions may be provided to accommodate different technology
environments or user groups. Each version should be as conformant as possible.
One version would need to be fully conformant in order to meet conformance
requirement 1.
Note 5: The conforming alternative version does not need to reside within the
scope of conformance, or even on the same Web site, as long as it is as freely
available as the non-conforming version.
Note 6: Alternate versions should not be confused with supplementary content,
which support the original page and enhance comprehension.
Note 7: Setting user preferences within the content to produce a conforming
version is an acceptable mechanism for reaching another version as long as the
method used to set the preferences is accessibility supported.
See Understanding Conforming Alternate Versions content (Web content)

content (Web content)
information and sensory experience to be communicated to the user by means of a
user agent, including code or markup that defines the content's structure,
presentation, and interactions.

context-sensitive help
help text that provides information related to the function currently being performed
Note: Clear labels can act as context-sensitive help.

contrast ratio
(L1 + 0.05) / (L2 + 0.05), where L1 is the relative luminance of the lighter of the
colors, and L2 is the relative luminance of the darker of the colors. Note 1: Contrast
ratios can range from 1 to 21 (commonly written 1:1 to 21:1).

Note 2: Because authors do not have control over user settings as to how text is
rendered (for example font smoothing or anti-aliasing), the contrast ratio for text
can be evaluated with anti-aliasing turned off.
Note 3: For the purpose of Success Criteria 1.4.3 and 1.4.6, contrast is measured
with respect to the specified background over which the text is rendered in normal
usage. If no background color is specified, then white is assumed.
Note 4: Background color is the specified color of content over which the text is to
be rendered in normal usage. It is a failure if no background color is specified
when the text color is specified, because the user's default background color is
unknown and cannot be evaluated for sufficient contrast. For the same reason, it
is a failure if no text color is specified when a background color is specified.
Note 5: When there is a border around the letter, the border can add contrast and
would be used in calculating the contrast between the letter and its background. A
narrow border around the letter would be used as the letter. A wide border around
the letter that fills in the inner details of the letters acts as a halo and would be
considered background.
Note 6: WCAG conformance should be evaluated for color pairs specified in the

200

content that an author would expect to appear adjacent in typical presentation.
Authors need not consider unusual presentations, such as color changes made
by the user agent, except where caused by authors' code.

correct reading sequence
any sequence where words and paragraphs are presented in an order that does not
change the meaning of the content.

emergency
a sudden, unexpected situation or occurrence that requires immediate action to
preserve health, safety, or property.

essential
if removed, would fundamentally change the information or functionality of the
content, and information and functionality cannot be achieved in another way that
would conform.

extended audio description
audio description that is added to an audiovisual presentation by pausing the video
so that there is time to add additional description

Note: This technique is only used when the sense of the video would be lost
without the additional audio description and the pauses between
dialogue/narration are too short.

flash
a pair of opposing changes in relative luminance that can cause seizures in some
people if it is large enough and in the right frequency range

Note 1: See general flash and red flash thresholds for information about types of
flash that are not allowed.
Note 2: See also blinking. Functionality processes and outcomes achievable
through user action

general flash and red flash thresholds
a flash or rapidly changing image sequence is below the threshold (i.e., content
passes) if any of the following are true:

1. there are no more than three general flashes and / or no more than three red
flashes within any one-second period; or
2. the combined area of flashes occurring concurrently occupies no more than a
total of .006 steradians within any 10 degree visual field on the screen (25% of any
10 degree visual field on the screen) at typical viewing distance where:
• A general flash is defined as a pair of opposing changes in relative luminance of

10% or more of the maximum relative luminance where the relative luminance
of the darker image is below 0.80; and where "a pair of opposing changes" is an
increase followed by a decrease, or a decrease followed by an increase, and

• A red flash is defined as any pair of opposing transitions involving a saturated
red.

Exception: Flashing that is a fine, balanced, pattern such as white noise or an
alternating checkerboard pattern with "squares" smaller than 0.1 degree (of visual
field at typical viewing distance) on a side does not violate the thresholds.
Note 1: For general software or Web content, using a 341 x 256 pixel rectangle
anywhere on the displayed screen area when the content is viewed at 1024 x 768
pixels will provide a good estimate of a 10 degree visual field for standard screen
sizes and viewing distances (e.g., 15-17 inch screen at 22-26 inches). (Higher

201

resolutions displays showing the same rendering of the content yield smaller and
safer images so it is lower resolutions that are used to define the thresholds.)
Note 2: A transition is the change in relative luminance (or relative
luminance/color for red flashing) between adjacent peaks and valleys in a plot of
relative luminance (or relative luminance/color for red flashing) measurement
against time. A flash consists of two opposing transitions.
Note 3: The current working definition in the field for "pair of opposing
transitions involving a saturated red" is where, for either or both states
involved in each transition, R/(R+ G + B) >= 0.8, and the change in the value of
(R-G- B)x320 is > 20 (negative values of (R-G-B)x320 are set to zero) for both
transitions. R, G, B values range from 0-1 as specified in “relative luminance”
definition. [HARDING-BINNIE]
Note 4: Tools are available that will carry out analysis from video screen capture.
However, no tool is necessary to evaluate for this condition if flashing is less than
or equal to 3 flashes in any one second. Content automatically passes (see #1
and #2 above).

human language
language that is spoken, written or signed (through visual or tactile means) to
communicate with humans

Note: See also sign language.
idiom

phrase whose meaning cannot be deduced from the meaning of the individual words
and the specific words cannot be changed without losing the meaning

Note: idioms cannot be translated directly, word for word, without losing their
(cultural or language-dependent) meaning.
Example 1: In English, "spilling the beans" means "revealing a secret." However,
"knocking over the beans" or "spilling the vegetables" does not mean the same
thing.
Example 2: In Japanese, the phrase “さじを投げる” literally translates into "he
throws a spoon," but it means that there is nothing he can do and finally he gives
up.
Example 3: In Dutch, "Hij ging met de kippen op stok" literally translates into "He
went to roost with the chickens," but it means that he went to bed early.

image of text
text that has been rendered in a non-text form (e.g., an image) in order to achieve a
particular visual effect

Note: This does not include text that is part of a picture that contains significant
other visual content.
Example: A person's name on a nametag in a photograph. Informative for
information purposes and not required for conformance Note: Content required for
conformance is referred to as "normative."

input error
information provided by the user that is not accepted Note: This includes:

1. Information that is required by the Web page but omitted by the user
2. Information that is provided by the user but that falls outside the required data
format or values

jargon
words used in a particular way by people in a particular field

202

Example: The word StickyKeys is jargon from the field of assistive
technology/accessibility.

keyboard interface
interface used by software to obtain keystroke input

Note 1: A keyboard interface allows users to provide keystroke input to programs
even if the native technology does not contain a keyboard.
Example: A touchscreen PDA has a keyboard interface built into its operating
system as well as a connector for external keyboards. Applications on the PDA
can use the interface to obtain keyboard input either from an external keyboard or
from other applications that provide simulated keyboard output, such as
handwriting interpreters or speech-to-text applications with "keyboard emulation"
functionality.
Note 2: Operation of the application (or parts of the application) through a
keyboard- operated mouse emulator, such as MouseKeys, does not qualify as
operation through a keyboard interface because operation of the program is
through its pointing device interface, not through its keyboard interface.

label
text or other component with a text alternative that is presented to a user to identify a
component within Web content

Note 1: A label is presented to all users whereas the name may be hidden and
only exposed by assistive technology. In many (but not all) cases the name and
the label are the same.
Note 2: The term label is not limited to the label element in HTML.

large scale (text)
with at least 18 point or 14 point bold or font size that would yield equivalent size for
Chinese, Japanese and Korean (CJK) fonts

Note 1: Fonts with extraordinarily thin strokes or unusual features and
characteristics that reduce the familiarity of their letter forms are harder to read,
especially at lower contrast levels.
Note 2: Font size is the size when the content is delivered. It does not include
resizing that may be done by a user.
Note 3: The actual size of the character that a user sees is dependent both on the
author-defined size and the user's display or user-agent settings. For many
mainstream body text fonts, 14 and 18 point is roughly equivalent to 1.2 and 1.5
em or to 120% or 150% of the default size for body text (assuming that the body
font is 100%), but authors would need to check this for the particular fonts in use.
When fonts are defined in relative units, the actual point size is calculated by the
user agent for display. The point size should be obtained from the user agent, or
calculated based on font metrics as the user agent does, when evaluating this
success criterion. Users who have low vision would be responsible for choosing
appropriate settings.
Note 4: When using text without specifying the font size, the smallest font size
used on major browsers for unspecified text would be a reasonable size to
assume for the font. If a level 1 heading is rendered in 14pt bold or higher on
major browsers, then it would be reasonable to assume it is large text. Relative
scaling can be calculated from the default sizes in a similar fashion.
Note 5: The 18 and 14 point sizes for roman texts are taken from the minimum
size for large print (14pt) and the larger standard font size (18pt). For other fonts
such as CJK languages, the "equivalent" sizes would be the minimum large print

203

size used for those languages and the next larger standard large print size.
legal commitments

transactions where the person incurs a legally binding obligation or benefit
Example: A marriage license, a stock trade (financial and legal), a will, a loan,
adoption, signing up for the army, a contract of any type, etc.

link purpose
nature of the result obtained by activating a hyperlink

live
information captured from a real-world event and transmitted to the receiver with no
more than a broadcast delay

Note 1: A broadcast delay is a short (usually automated) delay, for example used
in order to give the broadcaster time to queue or censor the audio (or video) feed,
but not sufficient to allow significant editing.
Note 2: If information is completely computer generated, it is not live.

lower secondary education level
the two or three year period of education that begins after completion of six years of
school and ends nine years after the beginning of primary education

Note: This definition is based on the International Standard Classification of
Education [UNESCO].

mechanism
process or technique for achieving a result

Note 1: The mechanism may be explicitly provided in the content, or may be
relied upon to be provided by either the platform or by user agents, including
assistive technologies.
Note 2: The mechanism needs to meet all success criteria for the conformance
level claimed.

media alternative for text
media that presents no more information than is already presented in text (directly or
via text alternatives)

Note: A media alternative for text is provided for those who benefit from alternate
representations of text. Media alternatives for text may be audio-only, video-only
(including sign-language video), or audio-video.

name
text by which software can identify a component within Web content to the user

Note 1: The name may be hidden and only exposed by assistive technology,
whereas a label is presented to all users. In many (but not all) cases, the label
and the name are the same.
Note 2: This is unrelated to the name attribute in HTML.

navigated sequentially
navigated in the order defined for advancing focus (from one element to the next)
using a keyboard interface

non-text content
any content that is not a sequence of characters that can be programmatically
determined or where the sequence is not expressing something in human language

Note: This includes ASCII Art (which is a pattern of characters), emoticons,
leetspeak (which uses character substitution), and images representing text

204

normative
required for conformance Note 1: One may conform in a variety of well-defined ways
to this document.

Note 2: Content identified as "informative" or "non-normative" is never required for
conformance.

on a full-screen window
on the most common sized desktop/laptop display with the viewport maximized

Note: Since people generally keep their computers for several years, it is best not
to rely on the latest desktop/laptop display resolutions but to consider the
common desktop/laptop display resolutions over the course of several years
when making this evaluation.

paused
stopped by user request and not resumed until requested by user

prerecorded
information that is not live

presentation
rendering of the content in a form to be perceived by users

primary education level
six year time period that begins between the ages of five and seven, possibly without
any previous education

Note: This definition is based on the International Standard Classification of
Education [UNESCO].

process
series of user actions where each action is required in order to complete an activity

Example 1: Successful use of a series of Web pages on a shopping site requires
users to view alternative products, prices and offers, select products, submit an
order, provide shipping information and provide payment information.
Example 2: An account registration page requires successful completion of a
Turing test before the registration form can be accessed.

programmatically determined (programmatically determinable)
determined by software from author-supplied data provided in a way that different
user agents, including assistive technologies, can extract and present this information
to users in different modalities

Example 1: Determined in a markup language from elements and attributes that
are accessed directly by commonly available assistive technology.
Example 2: Determined from technology-specific data structures in a non-markup
language and exposed to assistive technology via an accessibility API that is
supported by commonly available assistive technology.

programmatically determined link context
additional information that can be programmatically determined from relationships
with a link, combined with the link text, and presented to users in different modalities

Example: In HTML, information that is programmatically determinable from a link
in English includes text that is in the same paragraph, list, or table cell as the link
or in a table header cell that is associated with the table cell that contains the link.
Note: Since screen readers interpret punctuation, they can also provide the
context from the current sentence, when the focus is on a link in that sentence.

205

programmatically set
set by software using methods that are supported by user agents, including assistive
technologies

pure decoration
serving only an aesthetic purpose, providing no information, and having no
functionality

Note: Text is only purely decorative if the words can be rearranged or substituted
without changing their purpose.
Example: The cover page of a dictionary has random words in very light text in
the background.

real-time event
event that a) occurs at the same time as the viewing and b) is not completely
generated by the content
Example 1: A Webcast of a live performance (occurs at the same time as the viewing
and is not prerecorded).

Example 2: An on-line auction with people bidding (occurs at the same time as
the viewing).
Example 3: Live humans interacting in a virtual world using avatars (is not
completely generated by the content and occurs at the same time as the viewing).

relationships
meaningful associations between distinct pieces of content

relative luminance
the relative brightness of any point in a colorspace, normalized to 0 for darkest black
and
1 for lightest white

Note 1: For the sRGB colorspace, the relative luminance of a color is defined as L
= 0.2126 * R + 0.7152 * G + 0.0722 * B where R, G and B are defined as:

• if RsRGB <= 0.03928 then R = RsRGB/12.92 else R = ((RsRGB+0.055)/1.055) ^
2.4

• if GsRGB <= 0.03928 then G = GsRGB/12.92 else G = ((GsRGB+0.055)/1.055) ^
2.4

• if BsRGB <= 0.03928 then B = BsRGB/12.92 else B = ((BsRGB+0.055)/1.055) ^
2.4

and RsRGB, GsRGB, and BsRGB are defined as:
• RsRGB = R8bit/255
• GsRGB = G8bit/255
• BsRGB = B8bit/255

The "^" character is the exponentiation operator. (Formula taken from [sRGB] and
[IEC-4WD]).
Note 2: Almost all systems used today to view Web content assume sRGB
encoding. Unless it is known that another color space will be used to process and
display the content, authors should evaluate using sRGB colorspace. If using
other color spaces, see Understanding Success Criterion 1.4.3.
Note 3: If dithering occurs after delivery, then the source color value is used. For
colors that are dithered at the source, the average values of the colors that are
dithered should be used (average R, average G, and average B).
Note 4: Tools are available that automatically do the calculations when testing
contrast and flash.

206

Note 5: A MathML version of the relative luminance definition is available.
relied upon (technologies that are)

the content would not conform if that technology is turned off or is not supported
role

text or number by which software can identify the function of a component within Web
content

Example: A number that indicates whether an image functions as a hyperlink,
command button, or check box.

same functionality
same result when used

Example: A submit "search" button on one Web page and a "find" button on
another Web page may both have a field to enter a term and list topics in the Web
site related to the term submitted. In this case, they would have the same
functionality but would not be labeled consistently.

same relative order
same position relative to other items

Note: Items are considered to be in the same relative order even if other items
are inserted or removed from the original order. For example, expanding
navigation menus may insert an additional level of detail or a secondary
navigation section may be inserted into the reading order.

satisfies a success criterion
the success criterion does not evaluate to 'false' when applied to the page

section
A self-contained portion of written content that deals with one or more related topics
or thoughts

Note: A section may consist of one or more paragraphs and include graphics,
tables, lists and sub-sections.

set of Web pages
collection of Web pages that share a common purpose and that are created by the
same author, group or organization

Note: Different language versions would be considered different sets of Web
pages.

sign language
a language using combinations of movements of the hands and arms, facial
expressions, or body positions to convey meaning

sign language interpretation
translation of one language, generally a spoken language, into a sign language

Note: True sign languages are independent languages that are unrelated to the
spoken language(s) of the same country or region.

specific sensory experience
a sensory experience that is not purely decorative and does not primarily convey
important information or perform a function

Example: Examples include a performance of a flute solo, works of visual art etc.
structure

1. The way the parts of a Web page are organized in relation to each other; and

207

2. The way a collection of Web pages is organized
supplemental content

additional content that illustrates or clarifies the primary content Example 1: An audio
version of a Web page.

Example 2: An illustration of a complex process. Example 3: A paragraph
summarizing the major outcomes and recommendations made in a research
study.

synchronized media
audio or video synchronized with another format for presenting information and/or with
time-based interactive components, unless the media is a media alternative for text that
is clearly labeled as such technology (Web content)

mechanism for encoding instructions to be rendered, played or executed by user
agents

Note 1: As used in these guidelines "Web Technology" and the word "technology"
(when used alone) both refer to Web Content Technologies.
Note 2: Web content technologies may include markup languages, data formats,
or programming languages that authors may use alone or in combination to
create end- user experiences that range from static Web pages to synchronized
media presentations to dynamic Web applications.
Example: Some common examples of Web content technologies include HTML,
CSS, SVG, PNG, PDF, Flash, and JavaScript.

text
sequence of characters that can be programmatically determined, where the
sequence is expressing something in human language

text alternative
text that is programmatically associated with non-text content or referred to from text
that is programmatically associated with non-text content. Programmatically
associated text is text whose location can be programmatically determined from the
non-text content.

Example: An image of a chart is described in text in the paragraph after the chart.
The short text alternative for the chart indicates that a description follows.
Note: Refer to Understanding Text Alternatives for more information.

used in an unusual or restricted way
words used in such a way that requires users to know exactly which definition to
apply in order to understand the content correctly

Example: The term "gig" means something different if it occurs in a discussion of
music concerts than it does in article about computer hard drive space, but the
appropriate definition can be determined from context. By contrast, the word "text"
is used in a very specific way in WCAG 2.0, so a definition is supplied in the
glossary.

user agent
any software that retrieves and presents Web content for users

Example: Web browsers, media players, plug-ins, and other programs —
including assistive technologies — that help in retrieving, rendering, and
interacting with Web content.

user-controllable
data that is intended to be accessed by users

208

Note: This does not refer to such things as Internet logs and search engine
monitoring data.
Example: Name and address fields for a user's account.

user interface component
a part of the content that is perceived by users as a single control for a distinct
function

Note 1: Multiple user interface components may be implemented as a single
programmatic element. Components here is not tied to programming techniques,
but rather to what the user perceives as separate controls.
Note 2: User interface components include form elements and links as well as
components generated by scripts.
Example: An applet has a "control" that can be used to move through content by
line or page or random access. Since each of these would need to have a name
and be settable independently, they would each be a "user interface component."

video
the technology of moving or sequenced pictures or images Note: Video can be made
up of animated or photographic images, or both.

video-only
a time-based presentation that contains only video (no audio and no interaction)

viewport
object in which the user agent presents content

Note 1: The user agent presents content through one or more viewports.
Viewports include windows, frames, loudspeakers, and virtual magnifying
glasses. A viewport may contain another viewport (e.g., nested frames). Interface
components created by the user agent such as prompts, menus, and alerts are
not viewports.
Note 2: This definition is based on User Agent Accessibility Guidelines 1.0
Glossary. visually customized the font, size, color, and background can be set

Web page
a non-embedded resource obtained from a single URI using HTTP plus any other
resources that are used in the rendering or intended to be rendered together with it
by a user agent

Note 1: Although any "other resources" would be rendered together with the
primary resource, they would not necessarily be rendered simultaneously with
each other.
Note 2: For the purposes of conformance with these guidelines, a resource must
be "non-embedded" within the scope of conformance to be considered a Web
page.
Example 1: A Web resource including all embedded images and media.
Example 2: A Web mail program built using Asynchronous JavaScript and XML
(AJAX). The program lives entirely at http://example.com/mail, but includes an
inbox, a contacts area and a calendar. Links or buttons are provided that cause
the inbox, contacts, or calendar to display, but do not change the URI of the page
as a whole.
Example 3: A customizable portal site, where users can choose content to display
from a set of different content modules.
Example 4: When you enter "http://shopping.example.com/" in your browser, you
enter a movie-like interactive shopping environment where you visually move

209

around in a store dragging products off of the shelves around you and into a
visual shopping cart in front of you. Clicking on a product causes it to be
demonstrated with a specification sheet floating alongside. This might be a
single-page Web site or just one page within a Web site.

Appendix B: Acknowledgments
This section is informative.
This publication has been funded in part with Federal funds from the U.S. Department
of Education, National Institute on Disability and Rehabilitation Research (NIDRR)
under contract number ED05CO0039. The content of this publication does not
necessarily reflect the views or policies of the U.S. Department of Education, nor does
mention of trade names, commercial products, or organizations imply endorsement by
the U.S. Government.
Additional information about participation in the Web Content Accessibility Guidelines
Working Group (WCAG WG) can be found on the Working Group home page.

Participants active in the WCAG WG at the time of publication
• Bruce Bailey (U.S. Access Board)
• Frederick Boland (NIST)
• Ben Caldwell (Trace R&D Center, University of Wisconsin)
• Sofia Celic (W3C Invited Expert)
• Michael Cooper (W3C)
• Roberto Ellero (International Webmasters Association / HTML Writers Guild)
• Bengt Farre (Rigab)
• Loretta Guarino Reid (Google)
• Katie Haritos-Shea Andrew Kirkpatrick (Adobe)
• Drew LaHart (IBM) Alex Li (SAP AG)
• David MacDonald (E-Ramp Inc.)
• Roberto Scano (International Webmasters Association / HTML Writers Guild)
• Cynthia Shelly (Microsoft)
• Andi Snow-Weaver (IBM)
• Christophe Strobbe (DocArch, K.U.Leuven)
• Gregg Vanderheiden (Trace R&D Center, University of Wisconsin)

Other previously active WCAG WG participants and other
contributors to WCAG 2.0
Shadi Abou-Zahra, Jim Allan, Jenae Andershonis, Avi Arditti, Aries Arditi, Mike Barta,
Sandy Bartell, Kynn Bartlett, Marco Bertoni, Harvey Bingham, Chris Blouch, Paul
Bohman, Patrice Bourlon, Judy Brewer, Andy Brown, Dick Brown, Doyle Burnett,
Raven Calais, Tomas Caspers, Roberto Castaldo, Sambhavi Chandrashekar, Mike
Cherim, Jonathan Chetwynd, Wendy Chisholm, Alan Chuter, David M Clark, Joe Clark,
James Coltham, James Craig, Tom Croucher, Nir Dagan, Daniel Dardailler, Geoff
Deering, Pete DeVasto, Don Evans, Neal Ewers, Steve Faulkner, Lainey Feingold,
Alan J. Flavell, Nikolaos Floratos, Kentarou Fukuda, Miguel Garcia, P.J. Gardner, Greg
Gay, Becky Gibson, Al Gilman, Kerstin Goldsmith, Michael Grade, Jon Gunderson,
Emmanuelle Gutiérrez y Restrepo, Brian Hardy, Eric Hansen, Sean Hayes, Shawn
Henry, Hans Hillen, Donovan Hipke, Bjoern Hoehrmann, Chris Hofstader, Yvette

210

Hoitink, Carlos Iglesias, Ian Jacobs, Phill Jenkins, Jyotsna Kaki, Leonard R. Kasday,
Kazuhito Kidachi, Ken Kipness, Marja- Riitta Koivunen, Preety Kumar, Gez Lemon,
Chuck Letourneau, Scott Luebking, Tim Lacy, Jim Ley, William Loughborough, Greg
Lowney, Luca Mascaro, Liam McGee, Jens Meiert, Niqui Merret, Alessandro Miele,
Mathew J Mirabella, Charles McCathieNevile , Matt May, Marti McCuller, Sorcha
Moore, Charles F. Munat, Robert Neff, Bruno von Niman, Tim Noonan, Sebastiano
Nutarelli, Graham Oliver, Sean B. Palmer, Sailesh Panchang, Nigel Peck, Anne
Pemberton, David Poehlman, Adam Victor Reed, Chris Ridpath, Lee Roberts, Gregory
J. Rosmaita, Matthew Ross, Sharron Rush, Gian Sampson-Wild, Joel Sanda, Gordon
Schantz, Lisa Seeman, John Slatin, Becky Smith, Jared Smith, Neil Soiffer, Jeanne
Spellman, Mike Squillace, Michael Stenitzer, Jim Thatcher, Terry Thompson, Justin
Thorp, Makoto Ueki, Eric Velleman, Dena Wainwright, Paul Walsch, Takayuki
Watanabe, Jason White.

Appendix C: References
This section is informative.
CAPTCHA
The CAPTCHA Project, Carnegie Mellon University. The project is online at
http://www.captcha.net.
HARDING-BINNIE
Harding G. F. A. and Binnie, C.D., Independent Analysis of the ITC Photosensitive
Epilepsy Calibration Test Tape. 2002.
IEC-4WD
IEC/4WD 61966-2-1: Colour Measurement and Management in Multimedia Systems
and Equipment - Part 2.1: Default Colour Space - sRGB. May 5, 1998.
sRGB
"A Standard Default Color Space for the Internet - sRGB," M. Stokes, M. Anderson, S.
Chandrasekar, R. Motta, eds., Version 1.10, November 5, 1996. A copy of this paper is
available at http://www.w3.org/Graphics/Color/sRGB.html.
UNESCO
International Standard Classification of Education, 1997. A copy of the standard is
available at
http://www.unesco.org/education/information/nfsunesco/doc/isced_1997.htm.
WCAG10

Web Content Accessibility Guidelines 1.0, G. Vanderheiden, W. Chisholm, I.
Jacobs, Editors, W3C Recommendation, 5 May 1999,
http://www.w3.org/TR/1999/WAI- WEBCONTENT-19990505/. The latest version
of WCAG 1.0 is available at http://www.w3.org/TR/WAI-WEBCONTENT/.

211

212

REFERENCES

[1] Baumeister, H., Knapp, A., Koch, N. & Zhang, G.. Modelling Adaptivity with

Aspects. In ICWE (2005) doi.org/10.1007/11531371_53

[2] Baniassad, E. L. A., Clements, P. C., Araújo, J., Moreira, A., Rashid, A.,

Tekinerdoga, B.: Discovering Early Aspects. IEEE Software 23(1), 61-70 (2006)

[3] Baxley, B. Universal Model of a User Interface. DUX (2003)

doi:10.1145/997078.997090

[4] Brichau, J., D’Hondt, T. Aspect-Oriented Software Development: An

Introduction. AOSD Europe Project. http://www.aosd-europe.net/. Accessed 15th

April 2010.

[5] Broekstra, J., Kampman, A., van Harmelen, F. Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. ISWC 2342, 54-68 (2002)

[6] Casteleyn, S., Fiala, Z., Houben, G-J., van der Sluijs, K. Considering Additional

Adaptation Concerns in the Design of Web Applications. AH (2006)

doi:10.1007/11768012_28

[7] Casteleyn, S., Van Woensel, W., Houben, G-J. A Semantics-based Aspect-

Oriented Approach to Adaptation in Web Engineering. In HT (2007)

doi.acm.org/10.1145/1286240.1286297

[8] Casteleyn, S., Van Woensel, W., van der Sluijs, K., Houben, G.J.: Aspect-

Oriented Adaptation Specification in Web Information Systems: a Semantics-

based Approach. New Review of Hypermedia, Taylor and Francis 15(1), 39-91

(2009)

[9] Centeno, V., Kloos, C., Gaedke, M., Nussbaumer, M. Web Composition with

WCAG in Mind. W4A (2005) doi:10.1145/1061811.1061819

[10] Ceri, S., Brambilla, M., Fraternali, P. The History of WebML Lessons Learned

from 10 Years of Model-Driven Development of Web Applications. Conceptual

Modeling (2009) doi: 10.1007/978-3-642-02463-4_15

[11] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers, Boston (2000)

[12] Chung, L., Supakkul, S. Representing FRs and NFRs: A Goal-oriented and Use

Case Driven Approach. SERA (2004) doi:10.1007/11668855_3

213

[13] De Troyer, Casteleyn, S., Plessers, P. WSDM: Web Semantics Design Method. In:

Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modeling

and Implementing Web Applications. pp. 303-351. Springer-Verlag, London

(2008)

[14] Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall, NJ (1976)

[15] Fiala, Z., Hinz, M., Meissner, K. Developing Component-based Adaptive Web

Applications with the AMACONTbuilder. WSE (2005) doi:10.1109/WSE.2005.5

[16] Fiala, Z., Houben G.J. A Generic Transcoding Tool for Making Web Applications

Adaptive. CAiSE (2005) doi:10.1.1.124.7045

[17] Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-oriented Software

Development. Addison-Wesley, Vancouver BC (2004)

[18] Fons, J., Pelechena, V., Pastor, O., Valderas, P., Torres, V. Applying the OOWS

Model-Driven Approach for Developing Web Applications. The Internet Movie

Database Case Study. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web

Engineering: Modeling and Implementing Web Applications. pp. 65-108.

Springer-Verlag, London (2008)

[19] Frasincar, F., Houben, G.J., Vdovjak, R. Specification Framework for Engineering

Adaptive Web Applications. WWW (2002) doi:10.1.1.9.9912

[20] Gaedke M., Nussbaumer, M., Meinecke, J.: WSLS: A Service-Based System for

Reuse-Oriented Web Engineering. In: Matera, M., Comai, S. (eds.) Engineering

Advanced Web Applications, pp. 26-37. Rinton Press, NJ (2004)

[21] Gordillo, S., Rossi, G., Araújo, Moreira, J.A., Vairetti, C., Urbieta, M. Modeling

and Composing Navigational Concerns in Web Applications. Requirements and

Design Issues. LA-WEB (2006) doi:10.1109/LA-WEB.2006.21

[22] Hoffman, D., Grivel, E., Battle, L.: Designing Software Architectures to Facilitate

Accessible Web Applications. IBM Systems Journal 44(3), 467-484 (2005)

[23] Houben, G-J., van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z.,

Fransincar, F. Hera. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web

Engineering: Modeling and Implementing Web Applications. pp. 163-302.

Springer-Verlag, London (2008)

[24] ISO International Organization for Standardization/Technical Specification.

Ergonomics of human-system interaction - Guidance on Accessibility for human-

214

computer interfaces.

http://www.jtc1access.org/documents/swga_204/ISO_DIS_9241-171__E_.pdf

(2002); http://www.iso.org/iso/catalogue_detail?csnumber=30858 (2003).

Accessed 15 April 2010.

[25] Koch, N., Knapp, A., Zhang, G., Baumeister, H. UML-Based Web Engineering:

An Approach Based on Standards. In: Rossi, G., Pastor, O., Schwabe, D., Olsina,

L. (eds.) Web Engineering: Modeling and Implementing Web Applications. pp.

157-191. Springer-Verlag, London (2008)

[26] Kreitzberg C. B., Little, A.: Useful, Usable and Desirable: Usability as a Core

Development Competence. http://msdn.microsoft.com/en-

us/magazine/dd727512.aspx (2009). Accessed April 15th 2009.

[27] Larson, J.: Interactive Software: Tools for Building Interactive User Interfaces.

Prentice Hall, NJ (1992)

[28] Moreira, A., Araújo, J., Rashid, A. A Concern-oriented Requirements Engineering

Model. CAiSE (2005) doi:10.1007/11431855_21

[29] Moreno, L., Martinez, P., Ruiz, B. A MDD Approach for Modeling Web

Accessibility. IWWOST (2008) doi:10.1.1.163.9478

[30] Moreno, L. AWA, AWA, Methodological Framework in the Accessibility

Domain for Web Application Development. PhD Thesis.

http://www.sigaccess.org/community/theses_repository/phd/lourdes_moreno.php

(2010) Accessed April 15th 2010.

[31] Moreno, N., Romero, J., Vallecillo, A. An Overview of Model-Driven Web

Engineering and the MDA. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L.

(eds.) Web Engineering: Modeling and Implementing Web Applications. pp. 109-

155. Springer-Verlag, London (2008)

[32] Niederhausen, M., Fiala, Z., Kopcsek, N., Meissner, K. Web Software Evolution

by Aspect-Oriented Adaptation Engineering. WSE (2007)

doi:10.1109/WSE.2007.4380237

[33] Offutt, J. Quality Attributtes of Web Software Applications. IEEE Software,

19(2), 2002, 25-32 doi:10.1002/stvr.425

[34] PAS 78. Publicly Available Specification: A Guide to Good Practice in

Commissioning Accessible Websites, ICS 35.240.30. Disability Rights

215

Commission (DRC) http://www.hobo-web.co.uk/seo-blog/pas-78/ (2006-2011).

Accessed 15 April 2010.

[35] Plessers P. , Casteleyn S. , Yesilada Y. , De Troyer O. , Stevens R. , Harper S. &

Goble C. Accessibility: A Web Engineering Approach. WWW (2005)

doi:10.1145/1060745.1060799

[36] Rossi. G., Schwabe, D. Modeling and Implementing Web Applicactions with

OOHDM. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web

Engineering: Modeling and Implementing Web Applications. pp. 109-155.

Springer-Verlag, London (2008)

[37] Schauerhuber, A., Wimmer M., Schwinger, W., Kapsammer, E. & Retschitzegger,

W. Aspect-oriented Modeling of Ubiquitous Web Applications: The

AspectWebML Approach. ECBS MBD (2007) doi:10.1109/ECBS.2007.20

[38] Section 508. Electronic and Information Technology Accessibility Standards

http://www.section508.gov/index.cfm?fuseAction=stdsdoc (2000-2010). Accessed

15 April 2010

[39] Sommerville, I.: Software Engineering 8th Edition. Pearson Education Limited,

Harlow (2007)

[40] Stanca Law. Italian Legislation on Accessibility.

http://www.pubbliaccesso.it/biblioteca/documentazione/guidelines_study/index.ht

m (2004). Accessed 25 January 2010.

[41] Thatcher, J., Burks, M., Heilmann, Ch., Henry, S., Kirpatrick, A., Lauke, P.,

Lawson, B., Regan, B., Rutter, R., Urban, M., Waddell, C.: Web Accessibility -

Web Standards and Regulatory Compliance. Friendsof ED, USA (2006)

[42] Update of the 508 Standards - Draft Information and Communication Technology

(ICT) Standards and Guidelines and the Telecommunications Act Guidelines.

http://www.access-board.gov/sec508/refresh/draft-rule.htm#e106 (2010).

Accessed July 14th 2011.

[43] Vilain, P., Schwabe, D.: Improving the Web Application Design process with

UIDs, IWWOST Workshop Program.

http://users.dsic.upv.es/~west/iwwost02/papers/vilain.pdf (2002). Accessed June

1st 2009.

216

[44] Vilain, P., Schwabe, D., Sieckenius de Souza, C. A Diagrammatic Tool for

Representing User Interaction in UML. UML (2000) doi:10.1007/3-540-40011-

7_10

[45] W3C: Web Content Accessibility Guidelines 1.0. (WCAG 1.0).

http://www.w3.org/TR/WCAG10/ (1999). Accessed April 15th 2010.

[46] W3C: Web Content Accessibility Guidelines 2.0 (WCAG 2.0).

http://www.w3.org/TR/WCAG20/ (2008). Accessed April 15th 2010.

[47] W3C: HTML Techniques for Web Content Accessibility Guidelines 1.0.

http://www.w3.org/TR/WCAG10-HTML-TECHS/ (2000). Accessed April 15th

2010.

[48] W3C: User Agent Accessibility Guidelines 1.0 (UUAG 1.0).

http://www.w3.org/TR/WAI-USERAGENT/ (2002). Accessed April 22th 2010.

[49] W3C-WAI: Comparison of WCAG 1.0 Checkpoints to WCAG 2.0.

http://www.w3.org/WAI/WCAG20/from10/comparison/ (2008). Accessed April

22th 2010.

[50] W3C-WAI: Web Content Accessibility Guidelines (WCAG) 1.0 Documents.

http://www.w3.org/WAI/intro/wcag10docs.php (2006). Accessed April 22th 2010.

[51] Woods, S. Websites for Visually Impaired Users. Thesis

http://wise.vub.ac.be/Downloads/Theses/Woods-thesis.pdf (2006-2007). Accessed

April 15th 2009.

[52] Yesilada, Y., Harper, S., Goble, G. & Stevens, R. DANTE: Annotation and

Transformation of Web Pages for Visually Impaired Users. WWW (2004)

doi.acm.org/10.1145/1013367.1013540

[53] Zimmermann, G. & Vanderheiden, G.: Accessible Design and Testing in the

Application Development Process: Considerations for an Integrated Approach.

Universal Access in the Information Society 7(1-2), 117-128 (2008).

