

Ubiquigeneous Networking

A Distributed Networking Application Over Mobile

Embedded Devices.

Author: Rodolfo Kohn

Thesis Director: Luis Marrone

Thesis presented to obtain the grade of

Master in Data Networking

Faculty of Informatics - National University of La Plata

September 2004

Ubiquigeneous Networking

ii

Ubiquigeneous Networking

iii

 ללאורה ולתינוק הראשון שלנו

A Laura y nuestro primer bebé.

 באהבה.

Ubiquigeneous Networking

iv

Acknowledgments

This is the result of a four-year effort beginning with the first course at the Faculty of

Informatics, at the University of La Plata, in August 2000. I feel the result of this effort is,

in some way, reflected in this work. However, many people were involved in this effort

and deserve to be especially thanked.

Luis Marrone, my professor and Thesis Director, taught me networking protocols,

especially TCP/IP; he introduced me to the fundamentals and thus giving me the

possibility to follow this way and to feel safe to go ahead and do more. During my thesis,

he reviewed my work and gave me advice. He always did it with a humble attitude and

outstanding knowledge and effort.

Alexandru Petrescu, from Edge Networking Research Lab of Motorola Labs, was my

Advisor at Motorola. He kindly shared with me his knowledge on Mobility and Distributed

Systems, especially on Mobile IPv6, through his advice, reviews and several discussions

we had about cutting-edge technology topics. He gave me the opportunity to have some

participation in the LIVSIX project and dedicated much of his time to provide me the

technical support that was essential for the successful completion of this work.

My parents’ support was always present. My managers at Motorola, Global Software

Group, Argentina, gave me the freedom to use all the laboratory equipment to complete

my Thesis. All my professors at the University of La Plata introduced me to the

fundamentals of network security, distributed systems, networking protocols and

operating systems.

Finally, I want to thank the most important person, Laura, who was always encouraging

me with her love, patience and advice during this long process.

Ubiquigeneous Networking

v

Table of contents

1 ABSTRACT ... 13

2 MOTIVATION .. 14

3 OBJECTIVE OF THE THESIS ... 17

4 THESIS PRESENTATION .. 18

5 MOBILITY PROBLEMS ... 19

6 MOBILE IP.. 20

6.1 OVERVIEW... 20

6.2 A MACROMOBILITY SOLUTION.. 23

6.3 MOBILE IPV4 IMPLEMENTATIONS.. 24

6.4 DRAWBACKS ... 24

7 MOBILE IPV6 ... 26

7.1 OVERVIEW AND ADVANTAGES OVER MOBILE IPV4... 26

7.2 RETURN ROUTABILITY PROCEDURE AND BINDING UPDATES .. 29

7.3 MODIFICATIONS TO IPV6 PROTOCOL. .. 31

7.4 ROUTER ADVERTISEMENTS. .. 33

7.5 MOVEMENT DETECTION AND HANDOVER ... 35

7.6 IMPLEMENTATIONS .. 36

7.7 TRANSPARENCY... 36

8 LIVSIX: A MOBILE IPV6 STACK .. 37

9 PROCESSOR PLATFORM ... 38

10 OPERATING SYSTEM ... 42

11 APPLICATION-LAYER SOFTWARE.. 43

11.1 INTRODUCTION .. 43

11.2 TECHNICAL FEATURES ... 44

11.3 FUNCTIONAL DESCRIPTION.. 44

11.4 RESOLVER ... 51

Ubiquigeneous Networking

vi

12 PORT OF LIVSIX TO UCLINUX OVER COLDFIRE.. 52

12.1 CONFIGURATION AND COMPILATION OF UCLINUX. .. 52

12.2 SCRIPTS AND CODE MODIFICATION AND COMPILATION .. 54

12.3 LOAD OF THE STACK MODULE.. 58

12.4 ABILITY TO SEE AND MODIFY LIVSIX PARAMETERS ... 59

12.5 EXECUTION OF MODIFIED PING6 .. 60

12.6 RECEPTION OF ROUTING ADVERTISEMENTS AND STATELESS ADDRESS AUTO-CONFIGURATION .. 60

12.7 ROUTER SETTINGS ON M5272C3 ... 61

12.8 CHAT APPLICATION OVER TCP .. 61

12.9 FINAL TEST.. 61

13 APPLICATION AND STACK TEST.. 63

13.1 TESTBED .. 63

13.2 TESTS DESCRIPTION ... 68

14 AN APPLICATION PROPRIETARY SOLUTION FOR MOBILITY 80

14.1 WHAT IF .. 80

14.2 LOCATION SERVICE, IDENTIFIER AND LOCATOR .. 80

14.3 MOBILITY SUPPORT ... 81

14.4 DISADVANTAGES ... 82

15 RELATED DEVICES... 83

15.1 A MOBILE CHAT DEVICE... 83

15.2 THE VOCERA COMMUNICATIONS BADGE .. 83

15.3 ADVANTAGES OF USING MOBILE IPV6 IN SUCH DEVICE... 84

16 FUTURE POSSIBLE APPLICATIONS... 85

16.1 POSSIBILITIES .. 85

16.2 MOBILE MP3 PLAYER WITH HOME SERVER.. 85

16.3 CAR ROUTER ... 85

16.4 ANYWHERE INTERNET DEVICE .. 85

16.5 EASY PUSH TO TALK ... 88

17 CONCLUSIONS.. 89

18 APPENDIX A .. 92

18.1 DISPLAYS AND ETHEREAL OUTPUT ... 92

18.2 EB1 OUTPUT ... 92

18.3 EB2 OUTPUT ... 96

Ubiquigeneous Networking

vii

18.4 ETHEREAL IPV6 PACKETS SUMMARY: ON HA’S ETH0 BEFORE HANDOVER 101

18.5 ETHEREAL IPV6 PACKETS SUMMARY: ON HA’S ETH0 AFTER HANDOVER 103

18.6 ETHEREAL IPV6 PACKETS SUMMARY: ON ROUTER’S ETH0 BEFORE HANDOVER......................... 105

18.7 ETHEREAL IPV6 PACKETS SUMMARY: ON ROUTER’S ETH1 AFTER HANDOVER 107

19 APPENDIX B... 109

19.1 UTILITY FILES .. 109

19.2 FILE ADDROUTES ... 109

19.3 FILE SETROUTER.C ... 109

19.4 FILE SETVAL.C ... 112

19.5 FILE SETDEFINT.C .. 113

20 BIBLIOGRAPHY ... 115

21 WEB SITES ... 117

Ubiquigeneous Networking

viii

FIGURES

FIGURE 1 - TYPICAL MOBILE IPV4 SCENARIO .. 22

FIGURE 2 - TYPICAL MIPV6 SCENARIO... 29

FIGURE 3 - M5272C3 BLOCK DIAGRAM... 40

FIGURE 4 - M5272C3 BOARDS USED IN THE TESTS. ... 41

FIGURE 5 - CHAT USE CASES... 46

FIGURE 6 – CHAT CLASS DIAGRAM .. 48

FIGURE 7 - SESSION STATES DIAGRAM.. 49

FIGURE 8 - INITIAL CONFIGURATION... 64

FIGURE 9 - EB2 IS CONNECTED TO NETWORK2 ... 65

FIGURE 10 - THE HARDWARE INITIALLY SET... 66

FIGURE 11 - HUB2 CONNECTIONS AFTER HANDOVER. .. 67

FIGURE 12 - HA WAS INITIATED... 69

FIGURE 13 - ROUTER WAS INITIATED... 69

FIGURE 14 - KERNEL IPV6 ROUTING TABLE.. 70

FIGURE 15 - FRAME 9. SEGMENT SENT FROM EB2 IN NETWORK2... 73

FIGURE 16 - CHAT DISPLAY WHILE EB2 WAS MOVING.. 75

FIGURE 17 – SETTING A BINDING UPDATE IN EB1... 76

FIGURE 18 - CHAT ON EB1 WITH RO.. 77

FIGURE 19 - FRAME 21. RO IS USED IN MESSAGES SENT BY EB1... 79

FIGURE 20 - VOCERA COMMUNICATIONS BADGE .. 84

FIGURE 21 - DIFFERENT LINK TECHNOLOGIES DURING THE SAME SESSION.......................... 87

Ubiquigeneous Networking

ix

TABLES

TABLE 1 - FRAMES ON ETH1 OF THE ROUTER.. 72

TABLE 2 - FRAMES ON ETH0 OF THE HA.. 74

TABLE 3 - USING RO. FRAMES ON ETH1 OF THE ROUTER. .. 77

Ubiquigeneous Networking

x

Ubiquigeneous Networking

xi

Acronyms

Acronym Description

AD Administrative Domain

ARP Address Resolution Protocol

BSD Berkeley Software Distribution

BU Binding Update

CN Correspondent Node

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

ESP Encapsulated Security Payload

FA Foreign Agent

GPL General Public License

GPRS GSM General Packet Radio Service

HA Home Agent

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

LAN Local Area Network

MAC Medium Access Control

MIP Mobile IP

MN Mobile Node

MMU Memory Management Unit

MTU Maximum Transfer Unit

OOP Object Oriented Programming

PAN Personal Area Network

QoS Quality of Service

RA Routing Advertisement

RFC Request For Comments

RTOS Real Time Operating System

SA Security Association

Ubiquigeneous Networking

xii

SGSN Serving GPRS Support Node

SIP Session Initiation Protocol

SOHO Small Office Home Office

SPD Security Policy Database

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

UTRAN UMTS Terrestrial Radio Area Network

VoIP Voice over IP

Ubiquigeneous Networking

13 of 117

1 Abstract

The objective of this work is to develop a chat application between systems embedding

the ColdFire processor utilizing Mobile IPv6 and TCP protocols in order to demonstrate

that TCP connections are maintained while a device roams between two Ethernet 802.3

networks and that a peer node can be located even though it is not attached to its home

network. Furthermore, it will be demonstrated that mobility is transparent to upper layers

and the benefits this fact brings up.

Ubiquigeneous Networking

14 of 117

2 Motivation

Low cost and powerful processors are being used in an increasingly large number of

devices embedded into objects surrounding us. While the challenge of creating

meaningful services for these systems is constantly being addressed by various simple

applications, the communication between these systems is most often scaled down to

local exchanges of information, typically over a unique, homogeneous type of a wireless

environment. It is expected that when every single system (whatever its size, power

constraints or communication range) is enabled to use TCP/IP networking and to

establish both client-server and end-to-end peer communications, a whole new range of

distributed applications becomes possible. A tightly-related constraint is that such a

large number of systems can be networked together only if the large addressing space

of IPv6 is used. With IPv6, it is possible not only to ensure local communication, but

also to assign a unique address to every single device; hence the ability to connect to

the worldwide Internet, and over any wireless technology that is available at a given

location.

From an application perspective, it is important to use the widespread BSD socket

interface to the communications subsystem in a transparent manner with respect to

mobility. Whenever a mobile system is forced to change its temporary address (because

it is visiting a different network) this must happen in a transparent way to the upper-level

application. Such a behavior is supported by the Mobile IPv6 protocol being developed

by the Internet Engineering Task Force (IETF).

Another important aspect related to application-layer software is the always-present

need to reduce maintenance costs. It cannot be imagined that every existing IPv6

software application could be ever changed such as to support mobility. Managing

mobility entirely at the network layer with Mobile IPv6 helps creating persistent software

code and thus staying competitive.

The new distributed applications created as a result of availability of wireless

technologies involve highly mobile devices such as cell phones, PDA's, badges, sensors

and various forms of robots. It has been identified though that while a data service is

Ubiquigeneous Networking

15 of 117

being used, devices can move only as long as they remain attached to the same unique

link-layer technology, and, in most cases, to the same access network, unless some new

application-layer solution is provided. To improve mobility, the necessity of technology

convergence appears and is addressed by some of these solutions. They could be

implemented as part of the application - adding complexity and cost to it - or in a

middleware layer over which the application would run unmodified. Currently, there are a

number of different proposals for such middleware layer that can hardly interoperate.

Moreover, any application layer solution over TCP would have the performance

drawback of closing and opening new connections for every handover.

Unlike a pure middleware solution, the Mobile IP family of protocols localizes the

changes due to mobility only within the IP stack. Being proposed in a standard manner

by the IETF, it is intended for adoption by the worldwide Internet community. The Mobile

IP solution for IPv4 contexts (RFC 3344) has a series of drawbacks that are being

addressed by the IPv6 version. Mobile IPv6 takes advantage of various native IPv6

features (extension headers, address autoconfiguration, inherent IPSec features and

others) to dramatically improve on performance and simplicity.

Among other possibilities, this will permit a cell phone connected to a GPRS network to

switch to a Bluetooth home network and, from there, to the local Internet connection

while all established IP connections are maintained.

Nevertheless, this brings up another challenge: how to locate a device that is not

currently positioned at its home network. Traditional naming systems, such as DNS or

X.500 directory, are not suitable for this dynamic environment: since a large number of

mobile devices could move from one network to other many times in a short time, any

server would be easily overwhelmed [1]. This becomes an unmanageable issue,

especially if caching is considered. It is necessary to differentiate a naming service from

a location service. Mobile IP involves a home-based location service [1] and its use

along with DNS, to map from a human-friendly name to a home address, the identifier, is

a powerful solution for this problem.

Highly mobile devices usually have low cost and powerful processors with the capacity

of running sophisticated applications at the lowest possible price. Among the purposes

Ubiquigeneous Networking

16 of 117

of this work is to describe the process of porting the LIVSIX Mobile IPv6 stack from a

standard PC-like environment to a more constrained embedded system device using

ColdFire MCF5272, executing uClinux (a Linux variant).

The shortly expressed concept of "ubiquigeneous networking" tries to capture in two

words all the characteristics described above. Once small mobile devices are spread on

a ubiquitous scale and use Internet communications protocols over a wide range of

heterogeneous data and physical links, a great number of ingenuous communication

and application paradigms will inevitably emerge.

Ubiquigeneous Networking

17 of 117

3 Objective of the Thesis

The objective of this Thesis is two-fold: (1) develop a simple chat application using the

standard BSD socket interface and (2) port the LIVSIX TCP/IPv6/Mobile IPv6 stack from

a classic PC-like architecture to the MCF5272 "ColdFire" processor, under the uClinux

open-source operating system.

Another important goal of the work will be to demonstrate the advantages of managing

mobility within Mobile IPv6 on a highly mobile device. A demonstration will be performed

showing the implementation and execution of these concepts.

Key aspects of this objective are, first, to demonstrate that distributed embedded

applications can run unmodified while the device is moving between different networks

and, second, that a device can be accessed from anywhere independently of its point of

attachment to the Internet.

An important part of the Thesis report will be a description of current technologies and

potentially competitor products. Differences and advantages of Mobile IPv6 compared to

Mobile IPv4 will be explained. Differences and advantages compared to various existing

middleware solutions will be identified. Similar market products will be considered, such

as the Vocera communication devices and a short analysis will provide a comparison.

Ubiquigeneous Networking

18 of 117

4 Thesis Presentation

This thesis is composed by:

• A document describing the work done.

• A CD containing the document, in word and PDF format, and the source code.

The source code is divided in three parts:

• LIVSIX for ColdFire/uClinux. In the directory livsix.

• Utilities: includes a modified version of ping6, libraries and auxiliary applications. In

the directory utils.

• Chat Application. In the directory apps.

The directory containing the other three directories also contains a Makefile file that will

make the build and copy the binary files into the flash file system directory created by the

main uClinux Makefile.

Ubiquigeneous Networking

19 of 117

5 Mobility problems

An IP address identifies not only a node interface but also the network the interface is

attached to.

If a node attaches to a different network it will have to change its IP address, otherwise it

will not be able to receive any datagram delivered to it from another network and

probably also in the same network:

• Any datagram generated outside of the network to which the node is attached to will

be forwarded to the home network

• If the datagram has been generated in the same visiting network, the source host

can either have a default gateway configured for destinations not belonging to the

attached network or it can send an ARP broadcast asking for the corresponding

MAC address. Both the destination node and one router will answer and depending

on which frame has been received first, the datagram will be sent to one or the other.

Also datagrams sent out by the node may be dropped by routers implementing ingress

filtering [19].

As an alternative, host-specific routes can be propagated by the routers throughout the

Internet but this is not a scalable solution.

This feature has the following main consequences:

• The host cannot be accessed by another host that knows its old address.

• Any DNS server storing the host address must be updated and every cache entry for

this host throughout Internet must be removed before the host can be accessed by

other host having the old address stored in the cache or accessing to a DNS server.

• If the host moves from one network to the other, any existing connection that is

based on the IP address, like a TCP connection, will be broken: a datagram destined

to the new address will not be considered as belonging to the old socket; also a

datagram delivered by the node, with the new address as source address, will not be

considered as belonging to the same socket.

Ubiquigeneous Networking

20 of 117

6 Mobile IP

6.1 Overview

Mobile IP is a protocol specified by the IETF Network Working Group in the RFC 3344

[11]. It brings up a mobility solution based on the IPv4 protocol.

Mobile IP consists of the following principal architectural entities:

• Mobile Node (MN): the node that is capable of moving away from the home network.

• Home Agent (HA): router on the MN’s home network that has location information for

a mobile node that is away from home and tunnels to the MN any datagram received

in the home network destined to the MN.

• Foreign Agent (FA): a router in a visited network that assists MNs to achieve

mobility. It provides routing services to mobile nodes registered with it.

A fourth entity must be considered:

• Correspondent Node (CN): a node communicating with the MN.

Every node has a fixed IP address, called home address, by which it can be identified.

When the node is attached to its home network any datagram addressed to it will reach

it normally and any datagram sent by it will normally be routed to its destination. When

the MN is visiting a foreign network it gets a new care-of address by some means and

sends a registration request to the home agent which adds a mobility binding for the MN

in its mobility binding list. When another node, called correspondent node, tries to

access the MN, it sends a datagram that has the home address of the MN as destination

address, the datagram is routed as in standard IPv4 to the home network of the MN

where the home agent intercepts it, looks for the corresponding care-of address in the

mobility binding list and tunnels it to the current care-of address registered for the MN.

Finally the MN’s IP layer will receive the packet and, if it is necessary, will relay the data

to the higher layer.

Ubiquigeneous Networking

21 of 117

The care-of address is the terminating point of the tunnel through which the HA delivers

datagrams to the MN. Two types of care-of addresses exist:

• Foreign agent care-of address: the MN uses an address of the foreign agent, with

which it registers, as the care-of address. Thus the home agent tunnels the

datagrams to the foreign agent which de-tunnels the datagram, looks for the

destination IP in its visitors list, obtains the corresponding MAC address and delivers

the inner datagram to the MN through the link-layer to which both nodes are

attached. By using this type of care-of address all visiting MN’s can use the same

foreign agent’s address as care-of address.

• Co-located care-of address: the MN uses a care-of address obtained by other

mechanism, such as DHCP. In this case the MN is the terminating point of the tunnel

and it directly receives and de-tunnels the datagrams. This type is useful when FA’s

are not available in a visited network, though it may be not scalable for the IPv4

address space since it is necessary to have a pool of IP addresses reserved for

possible visiting MN’s.

While the IP home address is the identifier of the node’s interface, its care-of address is

the locator used to reach a node wherever it is attached to the Internet.

Every mobility agent, either home or foreign agent, sends out Agent Advertisements to

publish its services on the link it is serving. An Agent Advertisement is an ICMP Router

Advertisement used in IPv4 extended to include Mobility Agent Advertisement

information and possibly a Prefix-Lengths extension. For a FA, the Mobility Agent

Extension contains at least one care-of address that a MN can use as foreign agent

care-of address. The Prefix-Lengths extension specifies the number of leading bits that

define the network number of the corresponding Router Address listed in the ICMP

Router Advertisement part of the message. More details about these extensions can be

found in [11].

Figure 1 shows the typical scenario in Mobile IP. A host, called Correspondent Node in

this scenario, is attached to an Ethernet LAN which is connected to the Internet through

a router. This CN sends an IP packet to the MN using its home address as destination

Ubiquigeneous Networking

22 of 117

address. In the home network, in this case a Bluetooth PAN, the Home Agent has, at

least, one mobility binding for the MN in its mobility bindings list. The HA intercepts the

packet addressed to the MN and tunnels it to the foreign agent, in this case the foreign

network is located in a Radio Area Network of UMTS (UTRAN), the foreign agent gets

the inner packet from the packet received and delivers it to the MN registered with it by

some link layer means.

Figure 1 - Typical Mobile IPv4 scenario

RFC 3344 provides two primary algorithms for the MN to detect that it has moved to

other network:

• A MN records the Lifetime value conveyed by the Agent Advertisement. If the MN

hasn’t received any other advertisement from the same agent within the specified

Ubiquigeneous Networking

23 of 117

lifetime, it should attempt to discover a new agent with which to register.

• By comparing the router addresses and prefix-lengths received in the Agent

Advertisements received, the MN can detect it has moved.

A MN can also use some link layer information to detect it has moved to other network,

like in Cellular IP [4].

A Home Agent will use either gratuitous ARP or proxy ARP to intercept packets destined

to a MN that is roaming out of its home network and is registered with it. After having

intercepted the datagram, the HA will send it to the care-of address. In Mobile IPv4 a HA

can have more than one Mobility Binding for one MN, in this case the packet will be sent

to all the care-of addresses registered for the MN.

When a MN attached to a foreign network sends a datagram to a correspondent node, it

must use its home address as the source address. It can send it directly to the

correspondent node but the datagram could be filtered out by a router implementing

ingress filtering [19]. A safer way is to send the datagram in a reverse tunnel to the

Home Agent which, in turn, will take the inner datagram and will deliver it to the

Correspondent Node.

Finally, security considerations are defined for Mobile IP in RFC 3344. Mobile Nodes

and Mobility Agents must be able to perform authentication, especially Registration

messages must be authenticated. The default algorithm is HMAC-MD5. Protection

against replay attacks for registration requests is especially considered: a 64-bit

identification field is present in a Registration Request sent from the MN to the HA; this

field is used along with two methods – timestamps and nonces – for protection.

6.2 A Macromobility Solution

The terms macromobility and micromobility are widely used with a number of meanings.

In this work the definition adopted in [4] will be used, and macromobility will be used to

define mobility between different Autonomous Systems or Administrative Domains but it

Ubiquigeneous Networking

24 of 117

will also be used to define mobility between different Access Networks and although

usually there is a correspondence one-to-one between an Administrative Domain and an

Access Network, this is not always true. An inter-AD handover implies the mobile node

could need to be re-authenticated, QoS and charging policies could change, probably a

different IP address must be used and there is no security of mobility support [4].

Mobile IP is considered a good solution for macromobility. It is not considered as a well

suited solution for micromobility because of both the large amount of registration

messages it could generate in the Internet and the fact that other mechanisms such as

already implemented link layer solutions are faster to achieve handoffs [4][11]. In intra-

access network handovers there is usually an L2 proprietary handover solution already

implemented.

6.3 Mobile IPv4 Implementations

There are several Mobile IP implementations for different Operating Systems. Some of

them are Cisco Mobile IP, for Cisco IOS; Dynamics, for Linux and Windows, from the

Helsinki University of Technology; Sun Mobile IP, for Solaris; Treck Inc., for embedded

systems and RTOS.

6.4 Drawbacks

Mobile IP has important drawbacks though:

• Every traffic must be delivered through the HA which must tunnel it to the

corresponding care-of address. This puts a significant burden onto this node.

Furthermore, a significant delay is added to the round-trip time, sometimes

unnecessarily, e.g. when the correspondent node is in the same visiting network as

the mobile node.

• The IP address is an identifier for a node. The lack of available addresses in IPv4 is

an important hinder.

Ubiquigeneous Networking

25 of 117

• It requires a costly infrastructure to be added: a home agent in the home network

and a foreign agent in each network that can be visited. Besides, foreign agents

must be installed if the scalable service of foreign agent care-of address is to be

provided on a link.

Ubiquigeneous Networking

26 of 117

7 Mobile IPv6

7.1 Overview and advantages over Mobile IPv4

Mobile IPv6 is a work in progress of the Mobile IP Working Group of Internet

Engineering Task Force (IETF) [2].

Mobile IPv6 allows nodes to roam throughout the IPv6 Internet while still being

reachable by any other node. Whereas the basic scheme is pretty similar to Mobile IP for

IPv4, Mobile IPv6 solves all the drawbacks present in the former:

• By the utilization of new extension headers and destination options, it allows Route

Optimization, thus the efficiency can be dramatically improved: HA load can be

alleviated and the traffic can be faster.

• It uses the IPv6 address space which allows every device to have an IPv6 address

as identifier.

• It gets rid of foreign agents thus diminishing the cost of infrastructure.

Mobile IPv6 defines new ICMPv6 packets, extension headers and destination options

and makes use of the advantages of the Neighbor Discovery Protocols, as it will be

commented below.

This new protocol defines the following principal elements:

• Mobile Node

• Home Agent

• Correspondent Node.

While the MN is attached to its home network, IPv6 datagrams sent to it (and sent by it)

are routed normally as in IPv6.

In the typical scenario when a MN is visiting a foreign network, it listens to the Router

Advertisements [4] sent out by the routers attached to the same link. By looking at the

Ubiquigeneous Networking

27 of 117

new subnet prefixes, it can detect that it is away from the home network and, after

checking with Duplicate Address Detection that its link-local address is unique within the

link it is attached to, it uses stateless address auto-configuration [5] to form its own care-

of address stemmed from its hardware address and a network prefix advertised by the

routers. Afterwards, the device sends a Binding Update (BU) to its HA which in turn

updates its binding cache in order to maintain the new locator, and then it sends BU’s to

any CN which has an entry for the MN in its binding cache.

Foreign Agents are not needed in Mobile IPv6 because of the existence of stateless

address auto-configuration [5] specified by IPv6, in addition to stateful address auto-

configuration, the modified IPv6 Router Advertisements and the stretched address space

in IPv6. So, there are no foreign agent care-of addresses but only co-located care-of

addresses.

When a node, not having the corresponding entry in its binding cache or not supporting

Mobile IPv6, sends out a datagram destined to a MN that is away from home, the

datagram is routed to its home address; there, the HA intercepts the datagram and

obtains the current care-of address – the locator - of the MN from its binding cache, then

the HA tunnels the datagram directly to the MN which de-tunnels it at the IP layer and

passes it to the higher layers.

In Mobile IPv6 the MN can communicate with a CN in two different modes:

• Bidirectional Tunneling: does not require Mobile IPv6 support from the CN, any

datagram going to the MN goes to the home network, as in Mobile IPv4, where the

HA intercepts it and sends it through a tunnel to the MN. Datagrams sent by the MN

are reverse-tunneled to the HA which sends it to the CN.

• Route Optimization: after successfully running a procedure called Return Routability

Procedure by which the MN receives two nonce indexes (home nonce and care-of

nonce) and two tokens (home keygen token and care-of keygen token), the MN

sends a Binding Update with the primary care-of address to the CN which creates an

entry for the MN in its binding cache. When the CN sends a packet to the MN, it

checks its binding cache looking for an entry for the MN’s home address and obtains

the care-of address which is used as the destination address of the IP packet, the

Ubiquigeneous Networking

28 of 117

home address is conveyed in a new extension header called Routing Header Type 2.

When the MN receives the packet it takes the home address as the destination

address for IP and upper layers processing. The MN also sends packets directly to

the CN using its care-of address as the source address and storing its home address

in a new destination option called Home Address Destination Option, which is part of

the Destination Options header. The CN will use the home address for IP and upper

layers processing. This mode requires support of Mobile IPv6 in the correspondent

node.

With Route Optimization the shortest communication path can be used. Nevertheless,

when a CN supporting MIPv6 contacts the MN for the first time, it sends the first

datagram to the home address of the MN and, after obtaining the MN’s care-of address,

subsequent packets can use Route Optimization. Figure 2 shows a typical Mobile IPv6

scenario using Route Optimization.

Ubiquigeneous Networking

29 of 117

Correspondent Node

Mobile IPv6: A correspondent Node

communicating with a MN roaming in a foreign

network.

Internet

Home Agent

Router

Ethernet

Core Network & UTRAN

1: IPv6 packet to MN

Bidirectional Tunneling

2: To MN

HA intercepts a packet to

MN visiting a foreign

network and tunnels it to

the primary care-of

address

After Return Routability

Procedure and Binding

Update, Route

Optimization can be used.

Host supporting MIPv6

sends a packet to the

home address of MN

Bluetooth

network

Cell phone with

Bluetooth interface

Route Optimization

3: From MN to CN

Node-B

UMTS-Bluetooth

Mobile Node

Figure 2 - Typical MIPv6 scenario

7.2 Return Routability Procedure and Binding Updates

As it was mentioned above when MN moves to a new foreign network obtaining a new

primary care-of address it has to send a Binding Update to it HA and it should send BU’s

to the CN that appear in the MN’ Binding Update List.

First of all, the MN must send the BU to the HA to register the new primary care-of

address; upon receiving a successful Binding Acknowledgement the MN may initiate

registration to the CN’s.

Ubiquigeneous Networking

30 of 117

When the MN registers a care-of address with a CN, it stores an entry in a data structure

called Binding Update List for that CN. That entry will store data as the CN IPv6 address,

the care-of address registered, the lifetime of the registration, a home nonce index, a

care-of nonce index, a home keygen token, a care-of keygen token, etc.

Before sending a BU to a CN, for the sake of security, the MN must initiate a procedure,

called Return Routability Procedure, with the CN. Thus, the CN is assured that the right

MN is sending the BU. This procedure is made up of the following steps:

• The MN sends to the CN a Home Test Init message with its home address as the

source address and a cookie, home init cookie. This message is reverse tunneled

through the HA. Such tunneling should employ IPSec ESP in tunnel mode.

• The MN sends to the CN a care-of Init message with its care-of address as the

source address and a care-of init cookie.

• The CN generates a home nonce and then it generates a home keygen token based

on the home nonce, the home address of the MN and a secret key. Afterwards, it

sends a Home Test message, containing the home keygen token and a home nonce

index, to the MN’s home address.

• The CN generates a care-of nonce and then it generates a care-of keygen token

based on the care-of nonce, the care-of address of the MN and a secret key.

Afterwards, it sends a Care-of Test message, containing the care-of keygen token

and a care-of nonce index, to the MN’s care-of address.

When the procedure is finished, the MN generates a binding management key, kbm,

based on both keygen tokens and sends the BU with the following data:

• Source address is the care-of address.

• The home address within the Home Address Destination Option.

• A sequence number.

• A lifetime.

• A Mobility Header with the following options:

• Home nonce index and Care-of nonce index.

• A MAC (Message Authentication Code) generated with HMAC_SHA1 based on

Ubiquigeneous Networking

31 of 117

the Binding Management Key, the care-of address, the correspondent address

and the Mobility Header data. This MAC is conveyed in the Binding Authorization

Data option of the Mobility Header.

When the BU is received by the CN, it validates the message and creates a new entry

for the pair (home address, care-of address) in its Binding Cache, or updates the

existing one for the home address. Then it sends a Binding Acknowledgement. When

the acknowledgement is received by the MN, it updates or creates the corresponding

entry in its Binding Update List.

In order to delete any existing BU for the MN in the HA or a CN, the MN sends a BU with

a lifetime equal to 0 (zero) and the home address as the care-of address.

A MN can decide to send a BU to a CN which is not present in its Binding Update List.

An open issue is how to detect that the CN supports Mobility or not, one possibility is by

using the Home Address Destination Option in the Binding Update, if the CN does not

recognize it, it will answer with an ICMPv6 error message.

A MN can decide not to publish its care-of address to certain CN’s, so it keeps using

bidirectional tunneling.

The MN also has entries in its Binding Update List for the HA bindings.

7.3 Modifications to IPv6 protocol.

Mobile IPv6 is a new protocol that adds two new extension headers and one new

destination option to the IPv6 protocol. It also adds three new ICMPv6 messages.

A list of the new features follows:

• Mobility Header. This extension header is used by mobile nodes, correspondent

nodes and home agents in all messages related to the creation and management of

Ubiquigeneous Networking

32 of 117

bindings: Binding Refresh Request message, Home Test Init message, Care-of Test

Init message, Home Test message, Care-of Test message, Binding Update

message, Binding Acknowledgement message, and Binding Error message. The

next header value for this header was not defined at the time of [8].

• Home Address Option. This option is carried by the Destination Option

extension header and it contains the Home Address of the MN that sends a message

when Route Optimization is used. The receiving node uses this address as the

message’s source address for IPv6 processing and for upper layers. This option

cannot be used when the Mobility Header is present, except in the case of Binding

Update messages. If the receiving host does not recognize this option, it must

discard the packet and must send an ICMPv6 message to the sender.

• Type 2 Routing Header. This extension header is inserted in an IPv6 packet

sent directly to the care-of address of the mobile node. It contains the home address

of the MN. The receiving MN takes the home address from this header and uses it as

the destination address for any IPv6 or upper layer processing.

• ICMP Home Agent Address Discovery Request Message. This message

is sent by the mobile node to the Mobile IPv6 Home-Agents anycast address, for its

own subnet prefix, in order to initiate the dynamic home agent address discovery

mechanism.

• ICMP Home Agent Address Discovery Reply Message. This message is

sent by a home agent to respond to the Home Agent Address Discovery Request, it

conveys a list of home agents’ addresses in the home link.

• ICMP Mobile Prefix Solicitation Message. This message is sent by the

mobile node, while it is away from home, to the home agent to gather prefix

information about its own network.

• ICMP Mobile Prefix Advertisement Message. This is the response to the

last message above.

Mobile IPv6 also specifies modifications in the Router Advertisements defined by IPv6

Neighbor Discovery [10]. These modifications will be described in the description of this

type of message.

Ubiquigeneous Networking

33 of 117

7.4 Router Advertisements.

The Router Advertisement Message is a key element in Mobile IPv6 because it is

essential for basic movement detection; sometimes they are not necessary though.

This is an ICMP message defined by IPv6 Neighbor Discovery [10]. Each router

periodically multicasts this message, on the links to which it is attached, to advertise its

presence along with various link and Internet parameters. This message is also sent as

a response to a Router Solicitation Message.

The following information is included in the Router Advertisement Message:

• Cur Hop Limit. The default value that should be placed in the Hop Count field of the

IP header for outgoing IP packets.

• Flag ‘M’ that indicates hosts in the link to use administered (stateful) protocol for

address autoconfiguration.

• Flag ‘O’ that indicates hosts in the link to use administered protocol for

autoconfiguration of other information.

• Router Lifetime as default router.

• Reachable Time.

• The time between retransmitted Neighbor Solicitation messages.

• The following options can be included:

• Source link-layer address.

• Link MTU.

• Prefix Information. Prefixes that are on-link and/or are used for address

autoconfiguration. All on-link prefixes should be included.

Based on router advertisements received, a host builds a list of default routers. It also

can decide whether a destination address is on-link or not (even though an on-link prefix

is not necessarily present in the Prefix Information option. Also, hosts use prefix

information for stateless address autoconfiguration.

More information can be found in [10].

Ubiquigeneous Networking

34 of 117

Mobile Nodes can use Router Advertisements to learn that they have moved from one

network to another one. They can learn the presence of new routers and the fact that

previous routers are no longer reachable. Thus, they can acquire a new care-of address

and send the appropriate Binding Updates.

Since it is desirable to have faster movement detection, Mobile IPv6 relaxes the limits

set by IPv6 Neighbor Discovery for the interval between Router Advertisements sent by

routers that are expected to provide service to visiting mobile nodes or those that are set

as home agents.

Home Agents must include the Source Link-Layer Address option in all RA’s sent.

Other modifications specified by Mobile IPv6 are:

• A flag ‘H’ is added in the Router Advertisement Message to indicate that the router is

a Home Agent on the link.

• A flag ‘R’, Router Address bit, is added to the Prefix Information option to indicate

that the Prefix field contains a complete router global address. This is done because

Neighbor Discovery only allows advertising the link-local address while Dynamic

Home Agent Address Discovery mechanism requires the knowledge of the routers’

global addresses. A HA must include at least one option with the ‘R’ bit set.

• A new Advertisement Interval Option is added to indicate the interval at which the

sending router sends unsolicited multicast Router Advertisements. Routers may use

this option or not.

• A new Home Agent Information Option to indicate the preference of a HA, useful for

Home Agent Address Discovery mechanism, and the lifetime of the router availability

as a HA.

More detailed information can be found in [8].

Ubiquigeneous Networking

35 of 117

7.5 Movement Detection and Handover

L3 Handover is defined by [8] as the process by which a node detects a change in the

on-link subnet prefix, possibly because of a change of the subnet to which it is attached;

this requires a change in the care-of address and consequently the sending of binding

updates to the HA and the CN’s.

L2 Handover is the process by which the mobile node changes from one link-layer

connection to another [8].

An L3 Handover can be a Horizontal Handover when the same interface is used and the

link-layer connection changes or a Vertical Handover when the interface changes, for

example when a device turns from a connection to a GPRS radio access network to a

WLAN 802.11 connection.

According to [8], the primary goal of movement detection is to detect L3 handovers. The

generic method described in [8] for detecting movement is based on Router

Advertisements and Neighbor Unreachability Detection [10].

Basically, a node could detect that it has moved to a new L3 network when it receives

Router Advertisements from a new router, with different subnet prefixes, and when it

detects that the old router is no longer reachable by the use of Neighbor Unreachability

Detection after having noticed that it hasn’t received its RA’s for a reasonable amount of

time. However, a number of considerations that can be read in [8] make this detection

pretty complicated and different methods could be necessary for different types of link-

layers, applications and deployment scenarios [8]. Link-layer information can be needed

and it can even be preferable to determine that there has been an L3 handover (for

example in cellular radio access networks, which already use link-layer procedures to

manage micromobility).

When a MN detects an L3 handover, it performs Duplicate Address Detection on its link-

local address, selects a new default router, performs Prefix Discovery based on the RA’s

received, and creates the new care-of addresses. Registers its new primary care-of

address with its HA and, afterwards, it can update associated mobility bindings in the

Ubiquigeneous Networking

36 of 117

CN’s it is performing route optimization with.

Mobile IPv6 can be preferably used for macromobility. Because the signaling load that

Mobile IPv6 generates on L3 handovers could affect the Internet and could produce

delays in movement management that could hinder the accomplishment of seamless

handovers, for micromobility other protocols - such as link-layer protocols, Hierarchical

Mobile IPv6 and per-host forwarding protocols - and variants of this protocol - such as

Fast Handovers for Mobile IPv6 - could be preferred [4]. In [4] a number of alternatives

for micromobility are described.

7.6 Implementations

There are several implementations of Mobile IPv6; one of them is LIVSIX,

http://www.enrl.motlabs.com/livsix. Among others, the following can be mentioned: Cisco

Mobile IP, for Cisco IOS, http://www.cisco.com/warp/public/732/Tech/mobile/ip;

Monarch, for FreeBSD, from Rice University

http://www.monarch.cs.cmu.edu/mobile_ipv6.html; MIPL, for Linux, from Helsinki

University of Technology http://www.mipl.mediapoli.com; Treck Inc., for embedded

systems and RTOS, http://www.treck.com. Some of the existent implementations have

commercial license; others have GPL license or other type of Open Source license.

7.7 Transparency

Mobility management is transparent to the higher layers. Thus, an application can run

regardless of the mobile node’s being at the home network or the mobile node’s roaming

at a visiting network: a TCP connection towards the permanent Home Address can be

maintained alive and a FTP client, for example, can download a large file while the node

is roaming; also, a potentially mobile UDP server is always reachable at its Home

Address.

Ubiquigeneous Networking

37 of 117

8 LIVSIX: a Mobile IPv6 Stack

LIVSIX [17] is a Linux Mobile IPv6/TCP/UDP stack designed by Edge Networking

Research Lab of Motorola Labs to be used in mobility environments under the Motorola

LIVSIX Public License, an Open Source License.

This stack used to run in Linux systems, in i386 architecture processors. In the work

described here it was run and tested on a variable-length RISC ColdFire architecture

microprocessor, MCF5272.

LIVSIX stack is built into a module which must be loaded using the UNIX utility insmod.

At the time the tests were done, LIVSIX included the specifications of draft Draft-ietf-

mobileip-ipv6-19 but work is in progress to apply Draft-ietf-mobileip-ipv6-24

modifications [8] and RFC 3775.

Bidirectional tunneling is fully implemented in LIVSIX. Route Optimization is in progress,

during the test only messages sent from a correspondent node directly to a mobile node,

using Routing Header Type 2, were tested; the binding was added manually to the

binding cache.

IPSec is not fully implemented in LIVSIX yet. In the Security Policy Database, the

destination and source addresses are used as SA selectors. During the tests done, no

security was applied to IP packets. For every source and destination addresses security

was bypassed.

LIVSIX allows the configuration of mobile nodes, correspondent nodes, home agents

and routers with Mobile IPv6 support.

Ubiquigeneous Networking

38 of 117

9 Processor platform

MCF5272 is a V2 core ColdFire family microprocessor, created by Motorola.

It has a variable-length RISC architecture where the instructions can be 16, 32 or 48 bits

long. This allows code to be packed tighter in memory and thus, lowering memory and

system costs.

The ColdFire core is easily integrated with memories, system modules and peripherals.

This is a low-cost microprocessor especially designed for the cost-sensitive embedded

systems market.

It is used in a large variety of products like industrial equipment, cameras, robots, small

office-home office routers, Ethernet switches and VoIP phones.

It is a MMU less (no Memory Management Unit) processor so Virtual Memory is

unavailable, though protected memory capability could be optionally added.

The processor used has no floating point support and this adds complexity to the

programming tasks.

The architecture uses big endian byte order for integer numbers. This created some

complications to the port work.

The main features are:

• Performance: 63 Dhrystone 2.1 MIPS @ 66MHZ

• 1KB I-cache

• 4KB SRAM

• Multiply-Accumulate Unit (MAC)

• Hardware integer divide unit

• Debug module - background and real time

• Doze mode Integrated processor:

Ubiquigeneous Networking

39 of 117

o IEEE 802.3 compliant 10/100 Fast Ethernet Controller (FEC),

with dedicated DMA

o USB 1.1 device controller and transceiver

o 4 2B+D TDM ports

o HDLC software module

o QSPI

o SDRAM controller

o 3 PWM outputs

o 2 UARTs

o 1-channel DMA

o 8 chip selects

o 16-bit general purpose I/Os

o 4 16-bit timers SW watchdog timer

The block diagram of the processor as shown in the Freescale site [18] can be seen in

Figure 3 - M5272C3 block diagram.

Ubiquigeneous Networking

40 of 117

Figure 3 - M5272C3 block diagram1

In order to be able to use the processor and its different embedded peripherals an

evaluation board was used: M5272C3.

M5272C3 has

• 1 MCF5272 microprocessor

• 2 MB Flash memory

• 16 MB SDRAM.

• 1 10/100 Ethernet with RJ-45 connector.

• BDM interface.

• 2 RS-232 interfaces.

• Other interfaces not used: USB 1.1, PWM, etc.

Figure 4 shows the two boards used during the tests done.

1
 This diagram was obtained from the Freescale web site [18].

Ubiquigeneous Networking

41 of 117

Figure 4 - M5272C3 boards used in the tests.

The boards in the figure are connected through RS-232 to a PC; the output is shown in a

serial terminal emulator. Both boards are attached to an Ethernet 802.3 network. One of

the boards has a BDM device connected to download the image.

Ubiquigeneous Networking

42 of 117

10 Operating System

uClinux (micro-controller Linux) [19] is a GNU open source Embedded Operating

System evolved from the main Linux kernel; it is meant to run on small microprocessors

with hardware constraints such as lack of MMU (Memory Management Unit), floating

point arithmetic and others.

Its kernel is tightly related to the Linux kernel.

The kernel version used is 2.4.19.

uClinux source code can be compiled in Linux with the cross-compiler m68k-elf-gcc. The

compilation process generates an image that includes, in this work, a flash file system.

The zipped image is downloaded to the MCF5272, in the M5272C3, by means of a BDM

connector, to a specific address in flash memory.

In order to boot, a boot loader, called Colilo, has been used. This boot loader has the

responsibility of loading the Operating System into RAM memory and passing the

execution control to it.

uClinux distributions provide much of the possibilities Linux provides: different types of

file systems, networking, etc.

Some distributions also include a number of applications. One of them, BusyBox [20]

has been intensively used. BusyBox includes a set of UNIX utilities that are optimized for

embedded environments. The utilities used during this work are: insmod, rmmod, lsmod;

all of them are useful to manage device driver modules.

In order to get information and requesting help for problems, there are a number of

mailing-lists. One very important list is the one hosted by the main site [19].

Ubiquigeneous Networking

43 of 117

11 Application-layer Software

11.1 Introduction

A chat application has been developed for the purpose of demonstrating mobility support

over different networks. Since mobility is managed in the Network Layer, these networks

could be heterogeneous wireless or wired access systems (but this has not been tested

for the current thesis). The typical scenario involves a person carrying a device and

roaming between networks, where different wireless access technologies are available.

One such environment could be a typical enterprise campus, where several buildings

are linked by wired technologies but where "hotspot" areas offer wireless access to small

devices. Once the application is running, changing the access system is managed by the

IP stack, transparently to the application.

Besides Terminal Mobility, Personal Mobility can be achieved with Mobile IPv6. That is,

the user could change the device and he could be still located if the same home address

is used. This was not tested for this application.

A location service is needed in order to keep track of the current location of the user and

his contact device. This service will most likely include the Home Agent capabilities of

Mobile IPv6 that associates the permanent Home Address to any temporary Care-of

Address.

In addition, the location framework may include a name service such as X.500-like

directory in order to map user-friendly names to an identifier (an IPv6 Home Address, or

a security certificate or a multicast group). Also the current DNS system could be

considered to offer similar service. These types of naming services have not been used

for this thesis; instead, a very simple Name Resolver was implemented to map user-

friendly names to the home address if it were necessary.

Ubiquigeneous Networking

44 of 117

11.2 Technical features

The application has the following technical characteristics:

• It is programmed with C++, with Object Oriented Programming (OOP)

• It was designed using an Object Oriented Design.

• UML was used for the design.

• The target object runs on the processor ColdFire MCF5272, M5272C3 evaluation

board.

• The application is compiled in Linux with the cross-compiler GNU m68-elf-gcc.

• The application uses BSD sockets and IPv6.

• It is a one thread application. Non-blocking sockets is used.

• The application has a text user interface. Because of the use of de-coupled classes

and a Model-View–Controller architectural pattern, the user interface could be

changed without affecting the core of the application.

• The network interface used is Ethernet 802.3

• The application is unaware of any change in the network attachment. It only knows

its home address and the home address of the devices with which a session is, or

can be established.

11.3 Functional Description

The chat application allows a user of a MCF5272 based device to connect to other users

handling any device that runs the same application – or a compatible one - over IPv6. It

allows the establishment of several concurrent chat sessions such that, in each of them,

text messages are exchanged between two users.

As it was indicated above, a text user interface was implemented. This is so because the

M5272C3 was connected through an RS-232 connection to a PC, in which output was

displayed in a text mode serial terminal emulator. Input was inserted in the PC through

this terminal emulator. Because a Model-View-Controller architectural pattern was used,

the user interface is de-coupled from the core application, so a graphical user interface

Ubiquigeneous Networking

45 of 117

could be implemented for a different output device, without modifying the main

functionality classes.

The chat application uses IPv6 BSD sockets interface to connect to other applications

over TCP and IPv6. It is not aware of Mobile IPv6.

Because at the moment of this work, LIVISIX has not been tested with multithreaded

applications, this is a one-thread application using non-blocking sockets, in order to be

able to manage many different chat sessions, besides listening to new connection

requests. The application is constantly polling in order to detect new connections and to

serve every established session. If blocking sockets had to be implemented in the future,

the application, mainly the session layer implementation, would have to suffer important

modifications since multithreading would be necessary and polling would not be useful.

The main actions that can be done in a chat application are:

• Select a contact to chat.

• Initiate a chat session with other user. A connect, or an invitation message, has to be

sent to the intended user.

• Accept an invitation sent by other user to initiate a chat session.

• Reject an invitation sent by other user to initiate a chat session.

• Send a text message to other user.

• Finalize a chat session.

Figure 5 shows the corresponding Use Cases for the chat application.

Ubiquigeneous Networking

46 of 117

Realizes Text Communication

Selects Contact

Receives Invitation

<<include>>

Sends Invitation

<<include>>

<<include>>

Rejects Invitation

Accepts Invitation

<<include>>

Finishes Communication

User

Sends Messsage <<include>>

Figure 5 - Chat Use Cases

The application is made up of three main parts:

• User Interface: displays the application output, like command results and text

received, and receives the user input, chat commands and text to send, to send to

Ubiquigeneous Networking

47 of 117

the Main Application. This part encompasses the following class: UserInterface.

• Main Application: this is the part of the application that manages and connects all the

components. It interprets user input and sends appropriate session commands; it

receives session information and takes appropriate decisions, like generating output

or sending session commands. This part encompasses the following classes:

ChatMgr, Resolver.

• Session Layer: it deals with sockets, deals with and manages different sessions and

waits for new connections. It sends information to the Main Application and receives

commands from it. A session is implemented as an autonomous Finite State

Machine. This part encompasses the following classes: SessionMgr, Session,

SocketStream (Socket in the class diagram of Figure 6).

Figure 6 shows the class diagram of the system.

Ubiquigeneous Networking

48 of 117

Observer of:

-UserInterface Events

-SessionMgr Events

Resolver

resolverPtr : Resolver

Resolver()

<<static>> getInstance()

resolve()

Observer

<<virtual>> update()

UserInterface

end : Integer

parseCmd()

showText()

getSession()

operate()

inviteRcvd()

acceptRcvd()

rejectRcvd()

textRcvd()

finishRcvd()

getEnd()

error()

Subject

listObs

notify()

attach()

detach()

0..n 0..10..n 0..1

ChatMgr

sessionMgr : SessionMgr

userInterface : UserInterface

resolver : Resolver

processUserEvent()

processSessionEvent()

update()

UserEvent

userev_sub_type

param1

param2

Event

event_type : Integer

getEventType()

SessionEvent

sesev_sub_type

param1

param2

operate: returns a

SessionEvent as

output argument

operate: calls notify

to send event to

Observers

Singleton.

Resolves

user-friendly

name to IPv6

address

Singleton

SessionMgr

vectorSes : Session

listenSk : Socket

initialized : Integer

getSession()

getNewSession()

destroySession()

operate()

initialize()

sendInvite()

sendAccept()

sendReject()

sendFinish()

sendText()

Socket

iSocketFd

initialized

their_addr

my_addr

closed

blocking

connectTo()

iWrite()

iRead()

isClosed()

closeSocket()

bindSocket()

listenSocket()

acceptSocket()

1

1

1

1

Provider

ip6_addr

node_name

init : Integer

provider : Provider = NULL

Provider()

<<static>> initialize()

<<static>> getInstance()

getIP6Addr()

getNodeName()

Session

state : Integer

session_num : Integer

sock : Socket

ip6_addr

node_name

provider : Provider

operate()

getInvitedEvent()

setInvited()

getNumber()

sendInvite()

sendAccept()

sendReject()

sendFinish()

sendText()

0..n0..n

1

1

1

1

notify: foreach Observer

Observer->update(Event)

Figure 6 – Chat Class Diagram

A main function loops until the application is finished. In each loop it tells the SessionMgr

object and the UserInterface object to operate.

ChatMgr implements the application layer behavior. It receives events from the Subject

objects, UserInterface and SessionMgr and tells them to do something.

Ubiquigeneous Networking

49 of 117

SessionMgr has a vector of Session objects and, being always told to operate, it loops

over all the Session objects and tells each of them to operate. That is, to listen for

messages and return new SessionEvent objects that are notified to the Observer

objects, the ChatMgr object.

UserInterface is told to operate and it reads standard input to get user commands, it

parses the commands and notifies UserEvent objects to the Observer objects, the

ChatMgr object.

Sessions work as a Finite State Machine. So actions are performed depending on the

current state and the event received. Figure 7 shows the different states that a chat

session can have.

INVITE_SENT

INVITE / send INVITE msg

ESTABLISHED

INVITED

INVITE received (Session created and set)

ACCEPT msg received ^ACCEPT Session Ev

REJECT received / close socket ^REJECT Session Ev

ACCEPT from User / Send accept msg

User rejects / Send REJECT msg, close socket

Socket closed from peer / update variables F̂INISH Session Ev

FINISH from User / close socket

Figure 7 - Session States Diagram

Each established session has an integer identifier greater than zero.

Ubiquigeneous Networking

50 of 117

The user can send two types of commands:

• Commands tied to a specific session. These are prefixed by the session identifier

followed by a colon and the text to send.

• Commands tied to the application. These are prefixed by 0 (zero) followed by a colon

and the application command.

In order to establish a new session, a user selects a contact and sends an invitation to

that contact (locatable in a device with a fixed IPv6 home address). This is done with the

application command INVITE. The invitation message can be sent to an IPv6 address or

to a user-friendly name that is resolved to an IPv6 address.

0:invite 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

0:invite gondor

If the destination user accepts, it sends an ACCEPT message to the originator and a

session establishment is finished; then, they can send chat messages to each other. An

example of a user sending a message in session 1 is shown below.

1:Where are you?

Otherwise, the destination user sends a REJECT message.

In order to finish a chat session the user enters a FINISH command for that session. In

the example, session 1 is finished.

0:finish 1

To finish the chat application the same command is used but the argument is 0 (zero).

Ubiquigeneous Networking

51 of 117

11.4 Resolver

The Resolver is accessed by the ChatMgr if the destination of an INVITE message was

entered as a name. The Resolver returns the IPv6 address corresponding to that name.

The Resolver has a static mapping from certain names to IPv6 addresses; it does not

access the DNS or any other name resolution system. Thus, whether the destination

device is attached to the home network or to a visited network is transparent to the

application.

Ubiquigeneous Networking

52 of 117

12 Port of LIVSIX to uClinux over ColdFire

The steps followed to port the stack to ColdFire and to test it were:

1. Configuration and compilation of uClinux

2. Scripts and code modification and compilation.

3. Load of the stack module.

4. Ability to see and modify LIVSIX parameters.

5. Execution of modified ping6.

6. Reception of Routing Advertisements and stateless address auto-configuration.

7. Router settings on M5272C3.

8. Chat application.

9. Final Test.

12.1 Configuration and compilation of uClinux.

The first step was to set the environment in order to be able to compile the operating

system with the appropriate configuration.

First of all, the GNU cross-compiler was installed: m68k-elf-gcc. All the other necessary

tools, such as linker (m68k-elf-ld) and the library generator (m68k-elf-ar) were installed

as well.

The next step was to configure uClinux so that the module could be compiled and built

into the final image. The Kernel, applications and flash file system are built into a unique

image that is finally uploaded in to the board flash memory.

The distribution of uClinux comes along with a set of applications found in the directory

user; a directory called livsix was created here: user/livsix.

The file user/Makefile was modified in order to add an entry for the stack directory to

compile the stack.

Ubiquigeneous Networking

53 of 117

In order to add a help comment for configuration time the file config/Configure.help

was updated with the following lines:

CONFIG_USER_LIVSIX

 Livsix MIPv6 stack.

 An open source mobile IPv6 stack from Motorola.

The file config/config.in was modified so that the LIVSIX stack could be selected during

configuration:

comment 'Nice IPv6 stack'

bool 'LIVSIX' CONFIG_USER_LIVSIX

Into the directory user/livsix, three subdirectories were created:

• user/livsix/livsix: where the stack source code is located.

• user/livsix/utils: where utility functions and utilities library files are located.

• user/livsix/apps: where the chat application is located.

In order to configure uClinux the Makefile was executed with the xconfig argument

according to what is indicated in the uClinux README file:

make config/xconfig/menuconfig

The following features were set:

• Loadable modules support enabled: to load the stack module.

• sysctl interface support enabled in the /proc file system: to be able to modify

kernel settings.

• 16 MB RAM: this is the amount of memory the board M5272C3 has.

• LIVSIX selected.

• BusyBox applications selected: insmod, lsmod, rmmod. To be able of loading

and stopping the module.

• Unnecessary applications were deselected: so that memory was not wasted

Ubiquigeneous Networking

54 of 117

• Kernel 2.4.x selected.

• MCF5272 microprocessor selected.

By executing make in the top level directory the image was generated into a file:

image/image.bin

This file could be loaded into the flash memory.

To be able to boot the embedded system and run the operating system a boot-loader

had to be loaded into the flash memory: Colilo, ColdFire Linux Loader.

Colilo was installed at the beginning of the flash memory: 0xFFE00000

The image was compressed with gzip and loaded to the offset 0x40000: 0xFFE40000.

Having done this, the system can run with uClinux and the application.

12.2 Scripts and code modification and compilation

In order to be able to compile the stack for uClinux and ColdFire target, autoconf and

automake scripts were modified. In each directory of the source code, the following files

were modified:

• configure.in

• acinclude.m4

• Makefile.am

The modifications enabled:

• Use of the cross-compiler m68k-elf-gcc and other cross-compiling tools like m68k-

elf-ar, m68k-elf-ld and others.

• Big Endian target compilation.

Also, to be able to automatically compile for ColdFire/uClinux target, the following scripts

Ubiquigeneous Networking

55 of 117

were modified:

• config.sub

• config.guess

Some modifications were needed in the source code to adapt it to the new architecture.

The first problem to solve was the endianship; the stack had been tested in Pentium

processors that use little-endian byte order. ColdFire uses big-endian byte order. The

type of byte ordering the processor uses is called host type order. Furthermore, in

networking protocols a network byte order must be specified. Internet protocols use big-

endian order.

Little-endian byte order:

Big-endian byte order:

This is a complex issue since each line of code where integers of more than 1 Byte are

managed must be checked.

When networking protocols are programmed and integer type fields are exchanged

between nodes, there are certain functions that must be always used when the packets

low-order byte high-order

Address A Address A+1

high-order low-order byte

Address A Address A+1

Ubiquigeneous Networking

56 of 117

are formed to send and when they are received and data and protocol defined fields are

read.

The function prototypes are found in <netinet/in.h>

#include <netinet/in.h>

When setting integer packet fields the byte order must be converted from host order to

network order:

uint16_t htons(uint16_t host16bitvalue);

uint32_t htonl(uint32_t host32bitvalue);

When retrieving integer packet fields the byte order must be converted from network

order to host order:

uint16_t ntohs(uint16_t net16bitvalue);

uint32_t ntohl(uint32_t net32bitvalue);

In systems where the host order is equal to the network order, these functions are

defined as null macros.

Luckily LIVSIX developers programmed the stack in the right way, using these functions

whenever necessary. Only autoconf scripts had to be modified in order to support the

correct byte-order type for ColdFire and a few modifications in the source code.

The main problems found regarding endianship were:

• Cases where an integer type pointer that points to the correct type value is type

casted to a pointer of different size: this practice must be avoided in general. This

usually works properly with little-endian systems while this is not correct in big-

endian systems. A typical example of code that will work in little-endian but it will not

execute correctly in big-endian follows:

Ubiquigeneous Networking

57 of 117

uint8_t v1;

uint32_t *p1;

v1 = 2;

p1 = (uint32_t *)&v1;

if (p1 == 2) ...

• Cases where multi-byte integers must be managed one byte at a time. The bytes

must not be accessed directly from memory if the code is meant to be portable. The

following code will not execute correctly in a big-endian architecture.

uint16_t v1;

uint8_t *a1;

a1 = &v1;

if (a1[0] == 0xFE)

...

The next point to consider was the fact that the microprocessor used has no support for

floating-point numbers; it can be added optionally though. Places where floating-point is

used had to be modified in order to use fixed-point numbers. Only one file had to be

modified to solve this problem.

The fact that the microprocessor does not have Memory Management Unit caused some

complications: there is no virtual memory; the system organizes the memory in blocks of

different sizes. In order to be able to load the module other necessary applications were

not run so that a suitable-size block of memory was available to allocate for the stack

module. In case this does not work, the size of the memory blocks could have been

modified.

Ubiquigeneous Networking

58 of 117

TCP is working properly in LIVSIX but when the chat application was tested some bugs

were found out and solved:

• While one connection was established the chat application was not able to accept a

second connection: this was caused by a problem to access the connections related

to a specific port and made the three way handshake to abort for connection

requests.

• Non-blocking sockets are used. When accept is called in order to listen for new

connections a structure for the new socket is allocated by the Linux and uClinux

kernel, if there is no new connection established, i.e. with three-way handshake

terminated, the kernel releases the structure calling the release function provided by

the stack. When the last Byte of the structure address was equal to the last Byte of

the listening socket address the listening socket was released.

• Linux uses 2 different constants to check whether the socket is non-blocking: 0x40

and 0400

12.3 Load of the stack module

The first step to make the stack work was to successfully load the LIVSIX module in

uClinux.

In order to do it, one interface must be up. This can be achieved with the command

ifconfig:

/> ifconfig eth0 192.168.0.12

eth0: config: auto-negotiation on, 100FDX, 100HDX, 10FDX, 10HDX.

/> eth0: status: link up, 100MBit Full Duplex, auto-negotiation

complete.

After that the module is loaded with insmod:

/> cd bin

/bin> insmod livsix.o

Ubiquigeneous Networking

59 of 117

Using livsix.o

LIVSIXv0.3 Loaded

The only problem found was the one explained in Scripts and code modification and

compilation regarding the lack of a suitable memory block to load the module.

12.4 Ability to see and modify LIVSIX parameters

There are a number of parameters to configure LIVSIX but the basic ones are managed

with the LIVSIX command livconfig. The next step was to be able to execute this

command to observe the parameter values and to modify some of them.

The following commands set the Security Policy Databases (-s), the home agent (-h)

and route optimization (--ro, this feature is not fully implemented):

/bin> livconfig -s o ::/0 ::/0 0 0 0 0 0 1

/bin> livconfig -s i ::/0 ::/0 0 0 0 0 0 1

/bin> livconfig -h 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24

Setting Home Agent to 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24...

/bin> livconfig --ro enable

RO set

...

/bin> livconfig

eth0:

2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8 ->(Home Address)

FE80::5258:1FF:FE9D:7EB8

lo:

::0.0.0.1

Inbound Security Policy Database:

1. SRC: * DST: *

Policy: BYPASS

Ubiquigeneous Networking

60 of 117

Outbound Security Policy Database:

1. SRC: * DST: *

Policy: BYPASS

In the figure above the Aggregatable Global Unicast address, the Link-Local address

and the loopback address can be seen.

12.5 Execution of modified ping6

One of the most important achievements was to run a modified version of the GNU file

ping6.c.

After some work ping6 was tested successfully for global and link-local addresses,

between a ColdFire processor and a PC and between two ColdFire processors.

The main problem was that the inet_pton6 function, to convert a string address to a

binary address, was not available because the Operating System must be configured

without IPv6 support. The LIVSIX version of this function was used.

12.6 Reception of Routing Advertisements and stateless

address auto-configuration

The reception of Routing Advertisements is important for movement detection and for

stateless address auto-configuration. In the tests done, global addresses are auto-

configured based on the prefixes advertised in Router Advertisements and the MAC

(physical) addresses.

Ubiquigeneous Networking

61 of 117

12.7 Router settings on M5272C3

When tests where done between only two MCF5272 boards connected by an Ethernet

network, one of them had to be configured as Router so that it could send out Router

Advertisements at variable intervals and the other board could create a global address.

In order to configure the router a program, setrouter.c, was created to update the

following parameters through the sysctl interface:

• Prefix to advertise: in file /proc/sys/net/livsix/conf/eth0/ra_prefix_00/ra_pfl_prefix.

• Prefix length: in file /proc/sys/net/livsix/conf/eth0/ra_prefix_00/ra_pfl_prefixlen.

• Maximum interval between RA’s: in file

"/proc/sys/net/livsix/conf/eth0/ra_maxra_interval.

• Minimum interval between RA’s: in file

"/proc/sys/net/livsix/conf/eth0/ra_minra_interval.

• Enabling RA sending: in file /proc/sys/net/livsix/conf/eth0/ra_send_ras

• Setting the node as Router: in file /proc/sys/net/livsix/isrouter.

Other programs were created to set other parameters in different type of nodes:

• setdefint.c: to set the default interface to send out packets.

• setval.c: to set a value into a specific file.

12.8 Chat application over TCP

The chat application has been described above.

12.9 Final Test

The final demonstrated the chat application worked correctly even though the device

Ubiquigeneous Networking

62 of 117

was attached to network different than the home network. No new sockets had been

opened and the existing sessions kept working correctly. The socket to which the

application was listening also kept working correctly and continued accepting new TCP

connections.

The final testbed and test are described in the following section.

Ubiquigeneous Networking

63 of 117

13 Application and stack test

13.1 Testbed

The final testbed involved the following configuration:

• 2 Networks:

o network1 prefix: 2002:c3d4:6ffd:1101::/64

o network2 prefix: 2002:c3d4:6ffd:2202::/64

• 1 PC, with Linux kernel 2.4.21, called shire, running LIVSIX set as HA in

network1. Global address (eth0):

2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24/64

• 1 PC, with Linux kernel 2.4.21, called gondor, running LIVSIX set as router with

2 interfaces:

o eth0 to network1. Global address:

2002:C3D4:6FFD:1101:2E0:7DFF:FEE1:FBC1/64

o eth1 to network2. Global address:

2002:C3D4:6FFD:2202:208:54FF:FE03:FFF1/64

• 2 M5272C3 boards, with uClinux kernel 2.4.19, set as MN, initially connected to

network1. Home addresses set:

o EB1, eth0:

� Global address: 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8

� Link-local address: FE80::5258:1FF:FE9D:7EB8

o EB2, eth0:

� Global address: 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

� Link-local address: FE80::7232:4DFF:FECB:BE39

Ubiquigeneous Networking

64 of 117

Details to configure each network element can be found at [8] [9] [10].

During the initial configuration both boards were connected to network1, EB1 was

connected through the hub HUB1 while EB2 was connected to the hub HUB2 which, in

turn, was connected to HUB1. This was done in this way because the way of simulating

movement between network1 and network2 was by disconnecting the board from

network1 and connecting it to network2. The problem was that when the board is

disconnected the situation was detected by the board Ethernet device driver and this

affected LIVSIX. Then the board to be moved, EB2, was connected to HUB2 thus it was

HUB2 which was disconnected from network1 and connected to network2 while from

EB2’s standpoint the link was always up. Figure 8 shows the initial configuration.

Figure 8 - Initial configuration

Ubiquigeneous Networking

65 of 117

The chat application began in each M5272C3, EB1 sent an INVITE (application layer)

message to EB2, when the message was received by EB2, a new session was initiated,

EB2 accepted the invitation and sent an accept (application) message to the other one.

They began to chat. In the middle of the chat, EB2 –actually HUB2 - was disconnected

from network1 and was connected to network2, it detected the movement after having

received a Router Advertisement sent out by the Router’s eth1 interface with a prefix

different than that of the home network. Figure 9 shows the configuration after the

network change has been realized.

Figure 9 - EB2 is connected to network2

This was transparent for the TCP layer. The connection and the session were kept and

the chat continued normally.

Ubiquigeneous Networking

66 of 117

Figure 10 shows the hardware set initially in the place where the test was executed.

Figure 10 - The Hardware initially set.

The board at the left is EB1; it is connected to the hub on the PC case, HUB1. The other

board is EB2 and it is connected to HUB2, the one at the left, next to the monitor. HUB2

is initially connected to HUB1 with the grey cable.

The PC on the right is the one used as HA. It is also connected through RS-232 with

both boards. The PC on the left is the one used as router. In the router, eth0 is

connected to HUB1 with a blue cable while eth1 has the yellow cable connected to it.

The other point of the yellow cable is not connected. In order to get to the configuration

shown in Figure 9, HUB2’s grey cable will be disconnected and the yellow cable will be

connected to it. This is shown in Figure 11.

Ubiquigeneous Networking

67 of 117

Figure 11 - HUB2 connections after handover.

Ubiquigeneous Networking

68 of 117

13.2 Tests description

With the testbed described above, two tests have been successfully performed:

• Transparent Movement from one network to other.

• One-way MIPv6 Route Optimization (from CN to MN).

Both boards were connected to the Linux PC set as HA through RS-232 serial

connections. EB1 was connected to COM1 whereas EB2 was connected to COM2. A

serial terminal emulator called microcom was used and was configured as:

• COM interface as 19200 bauds.

• Log session to a file.

Two Ethereal instances were executing from the beginning: one in shire, sniffing on

eht0, the second one in gondor, sniffing on eth0 and after the “handover”, on eth1.

In the first test, initially, the layout of Figure 8 was set. Both boards were turned on,

uClinux initialized and the steps below were followed in the shown order, in each board:

1. Interface eth0 was set up with ifconfig: IPv4 addresses 192.168.0.11 and

192.168.0.12 for EB1 and EB2 respectively.

2. LIVSIX module livsix.o was loaded.

3. Interface eth0 was set as default by updating file /proc/sys/net/livsix/conf/eth0/defint

with setdefint utility.

4. Outbound SPD was configured with “livconfig –s”.

5. Inbound SPD was configured.

6. Home agent was to 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24 set with

“livconfig –h”.

7. Route Optimization was set, though this feature is not fully implemented.

8. livconfig utility was run to show the initial configuration.

After that, the home agent was run in the HA Linux PC, shire. This is shown in Figure

Ubiquigeneous Networking

69 of 117

12.

Figure 12 - HA was initiated.

The router was initialized in the Router PC, gondor. This is shown in Figure 13.

Figure 13 - Router was initiated.

[root@shire userspace]# livsix.sh start
Starting LIVSIX: [OK]
Homeaddress set to 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24
Default Interface set to eth0
LIVSIX box configured as Home Agent
eth0:
FE80::2C0:26FF:FEB5:A24

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

[root@shire userspace]# ifconfig eth0 add 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24
[root@shire userspace]# livconfig -b
livconfig: Binding Cache:
HOME ADDRESS CARE-OF ADDRESS
lt

[root@gondor userspace]# ./livsix.sh start
Starting LIVSIX: [OK]
LIVSIX box configured as Router
eth1:
FE80::208:54FF:FE03:FFF1

eth0:
FE80::2E0:7DFF:FEE1:FBC1

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

[root@gondor userspace]# ifconfig eth0 add 2002:c3d4:6ffd:1101:2E0:7DFF:FEE1:FBC1
[root@gondor userspace]# ifconfig eth1 add 2002:c3d4:6ffd:2202:208:54FF:FE03:FFF1
[root@gondor userspace]# ./addroutes
[root@gondor userspace]# ./setrouter

Ubiquigeneous Networking

70 of 117

After having called setrouter the following configuration was set in the Kernel IPv6

routing table.

Figure 14 - Kernel IPv6 routing table.

Once the application setrouter was run, the router began to send out Router

Advertisements in both networks.

Looking at 18.6 (frames 173, 202, 439, and 552), it is possible to see that each node,

including the router, sent out a Router Solicitation ICMPv6 message. In the router PC,

LIVSIX sent this type of message before having been configured as router. Frame 775 is

the first Router Advertisement sent by the router. After all nodes received it, they began

to send IP packets with the auto-configured global address as source address (from

frame 964 up).

The chat application was initiated in both boards. As it can be seen in 18.2 , from EB1 an

INVITE message was sent to the home IPv6 address of EB2.

>>0:invite 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

Then a Neighbor Solicitation ICMPv6 packet was sent, this is frame 964 in 18.6 , and

until frame 1018, several Neighbor Solicitation and Neighbor Advertisement packets are

logged (in 18.4 , frames 1422-1474). Finally, EB1 got the MAC address of EB2, this

frame cannot be seen because it was sent directly from EB2 to EB1 and the hubs did not

deliver the frame to all the networks.

Then the first TCP message over MIPv6, a SYN, was sent from EB1 to EB2, the 3-way

handshake was produced and the INVITE message was sent. EB2 received the

[root@gondor userspace]# route -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
2002:c3d4:6ffd:1101::/64 :: U 1 1 0 eth0
2002:c3d4:6ffd:2202::/64 :: U 1 1 0 eth1

Ubiquigeneous Networking

71 of 117

notification and sent the ACCEPT (18.3).

*** 1:INVITE RECEIVED FROM IP 2002:c3d4:6ffd:1101:5258:01ff:fe9d:7eb8

NODE: uClinux***

>>0:accept 1

When EB1 received the ACCEPT message it sent the first text message (18.2).

*** 1:ACCEPT RECEIVED FROM IP 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39

NODE: ***

>>1:HELLO!

All these frames cannot be seen in the Ethereal logs.

After a while, HUB2, and EB2 with it, was disconnected from network1 and was

connected to network2.

In gondor, before connecting HUB2 to network2, Ethereal was set to sniff on eth1.

Once EB2 was connected to network2, from this action all the frames, until the chat

session is closed, are shown in Table 1. gondor detected the link on eth1 as active and

a Router Solicitation was sent to the all routers multicast address {1} and it delivered a

Router Advertisement to the all hosts multicast address {2}.

N Time Source Destination Prot. Protocol Info

1 0.000000 fe80::208:54ff:fe03:

fff1

ff02::2 ICMPv6 ICMPv6 Router solicitation

2 0.000098 fe80::208:54ff:fe03:

fff1

ff02::1 ICMPv6 ICMPv6 Router advertisement

3 0.001911 2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

2c0:26ff:feb5:a24

IPv6 Unknown (0x3e)

4 0.005327 2002:c3d4:6ffd:2202:

208:54ff:fe03:fff1

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

ICMPv6 Neighbor solicitation

5 0.006563 2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

2002:c3d4:6ffd:2202:

208:54ff:fe03:fff1

ICMPv6 Neighbor solicitation

6 0.007477 2002:c3d4:6ffd:2202:

208:54ff:fe03:fff1

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

ICMPv6 Neighbor advertisement

7 0.008312 2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

2002:c3d4:6ffd:2202:

208:54ff:fe03:fff1

ICMPv6 Neighbor advertisement

8 0.009096 2002:c3d4:6ffd:1101: 2002:c3d4:6ffd:2202: IPv6 Unknown (0x3e)

Ubiquigeneous Networking

72 of 117

2c0:26ff:feb5:a24 7232:4dff:fecb:be39

9 23.447565 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345741

Ack=12345734 Win=37782 Len=46

10 23.585459 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345734

Ack=12345787 Win=29954 Len=0

11 33.106548 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345734

Ack=12345787 Win=29954 Len=17

12 33.166377 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345787

Ack=12345751 Win=37782 Len=0

13 68.897671 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345787

Ack=12345751 Win=37782 Len=10

14 68.985326 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345751

Ack=12345797 Win=29954 Len=0

15 81.017736 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [FIN, ACK] Seq=12345797

Ack=12345751 Win=37782 Len=0

16 81.185318 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345751

Ack=12345798 Win=29954 Len=0

17 81.585708 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [FIN, ACK] Seq=12345751

Ack=12345798 Win=29954 Len=0

Table 1 - Frames on eth1 of the Router

After that, EB2 detected it was in a foreign network and sent a Binding Update to the HA

{3}. The Next Header type for the Mobility Header is 0x3E (Ethereal did not recognize it).

The reply is {8}. Once the successful reply was received, the TCP communication

continued normally. Frame {9} can be seen below, containing the chat message that

appears in 18.3 . Messages between EB1 and EB2 are conveyed through a bidirectional

tunnel.

Ubiquigeneous Networking

73 of 117

Figure 15 - Frame 9. Segment sent from EB2 in network2.

In network1, the frames in Table 2 were seen in eth0 of shire (HA) since the Binding

Update was received until the chat session was closed.

Frame 9 (172 bytes on wire, 172 bytes captured)
 Arrival Time: Apr 19, 2004 01:02:05.251106000
 Time delta from previous packet: 23.438469000 seconds
 Time relative to first packet: 23.447565000 seconds
 Frame Number: 9
 Packet Length: 172 bytes
 Capture Length: 172 bytes
Ethernet II, Src: 70:32:4d:cb:be:39, Dst: 00:08:54:03:ff:f1
 Destination: 00:08:54:03:ff:f1 (Netronix_03:ff:f1)
 Source: 70:32:4d:cb:be:39 (70:32:4d:cb:be:39)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 118
 Next header: IPv6 (0x29)
 Hop limit: 255
 Source address: 2002:c3d4:6ffd:2202:7232:4dff:fecb:be39
 Destination address: 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 78
 Next header: TCP (0x06)
 Hop limit: 255
 Source address: 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
 Destination address: 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
Transmission Control Protocol, Src Port: 1514 (1514), Dst Port: 49152 (49152), Seq:
12345741, Ack: 12345734, Len: 46
 Source port: 1514 (1514)
 Destination port: 49152 (49152)
 Sequence number: 12345741
 Next sequence number: 12345787
 Acknowledgement number: 12345734
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 37782
 Checksum: 0x276d (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 964, tsecr 464
Data (46 bytes)

0000 00 03 00 2e 49 27 76 65 20 6d 6f 76 65 64 20 74 I've moved t
0010 6f 20 6e 65 74 77 6f 72 6b 32 2e 20 49 27 6d 20 o network2. I'm
0020 69 6e 20 6e 65 74 77 6f 72 6b 32 21 21 21 in network2!!!

Ubiquigeneous Networking

74 of 117

N Time Source Destination Prot. Protocol Info

600 36.059687 2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

2c0:26ff:feb5:a24

IPv6 Unknown (0x3e)

601 36.059988 2002:c3d4:6ffd:1101:

2c0:26ff:feb5:a24

ff02::1 ICMPv6 ICMPv6 Neighbor advertisement

602 36.060193 2002:c3d4:6ffd:1101:

2c0:26ff:feb5:a24

ff02::2 ICMPv6 ICMPv6 Neighbor advertisement

603 36.060483 2002:c3d4:6ffd:1101:

2c0:26ff:feb5:a24

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

IPv6 Unknown (0x3e)

634 59.508966 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345741

Ack=12345734 Win=37782 Len=46

635 59.509124 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345741

Ack=12345734 Win=37782 Len=46

636 59.644921 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345734

Ack=12345787 Win=29954 Len=0

637 59.645169 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345734

Ack=12345787 Win=29954 Len=0

640 69.167487 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345734

Ack=12345787 Win=29954 Len=17

641 69.167754 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345734

Ack=12345787 Win=29954 Len=17

642 69.229518 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345787

Ack=12345751 Win=37782 Len=0

643 69.229655 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345787

Ack=12345751 Win=37782 Len=0

646 104.966228 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345787

Ack=12345751 Win=37782 Len=10

647 104.966388 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345787

Ack=12345751 Win=37782 Len=10

648 105.051984 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345751

Ack=12345797 Win=29954 Len=0

649 105.052233 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345751

Ack=12345797 Win=29954 Len=0

654 117.088198 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [FIN, ACK] Seq=12345797

Ack=12345751 Win=37782 Len=0

655 117.088354 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [FIN, ACK] Seq=12345797

Ack=12345751 Win=37782 Len=0

656 117.253923 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345751

Ack=12345798 Win=29954 Len=0

657 117.254172 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345751

Ack=12345798 Win=29954 Len=0

660 117.654363 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [FIN, ACK] Seq=12345751

Ack=12345798 Win=29954 Len=0

661 117.654615 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

TCP 49152 > 1514 [FIN, ACK] Seq=12345751

Ack=12345798 Win=29954 Len=0

Table 2 - Frames on eth0 of the HA

After having received the Binding Update {600}, the HA sent out two Neighbor

Ubiquigeneous Networking

75 of 117

Advertisement ICMPv6 messages, one to all nodes multicast address {601} and another

one to all routers multicast address {602}, to indicate that its link-layer address

corresponds to EB2’s IPv6 address in order to act as a proxy for EB2. Then the

registration was acknowledged {604} and, from that moment, every message sent to

EB2 was intercepted in network1, the home network, by the HA {636, 640, 648, 656,

660}, which tunneled the IP packet in a new packet destined to the care-of address {637,

641,649, 657, 661}, when EB2 received the packet, it obtained the packet inside.

Every packet from EB2 to EB1 was reverse-tunneled to the HA {634, 642, 646, 654}

which sent the final packet to EB1 {635, 643, 647, 655}.

As it can be seen in Table 1 and Table 2, the session was closed by EB2 {654}. This is

the log of EB2, since it sent the last message before moving, until it closed the session.

Figure 16 - Chat display while EB2 was moving.

It is possible to see that frame {9}, a TCP segment, in Table 1, was sent without

performing a new 3-way handshake before and the communication continued normally.

All TCP segments have the prefix 2002:c3d4:6ffd:1101::/64 in the source address

because IPv6 packets were sent using bidirectional tunneling and Ethereal shows, in the

summary, the source address of the inner packet. In the details of frame {9} the external

packet has the prefix 2002:c3d4:6ffd:2202::/64. This segment belonged to a connection

set when EB2 was attached to network1, otherwise, after having received it, EB1 would

have sent a RESET segment, which, at least, would have been received by the HA and

>>1:I'll move to network2

>>1:I've moved to network2. I'm in network2!!!

>>

*** 1:That's great!***

>>ok bye

*** PARSE ERROR: 109 ***

>>1:ok bye

>>0:finish 1

Ubiquigeneous Networking

76 of 117

shown in Table 2. Also the session continued with further segments being exchanged.

Thus, the movement of EB2 from network1 to network2 was transparent for the TCP

layer. As a consequence, the application did not have to be aware of that situation.

Route optimization was partially tested since it is still not completely implemented in

LIVSIX: after the first test, a binding was manually added in EB1’s binding cache. The

application livconfig [12] was used to do this.

Figure 17 shows the way it was done.

Figure 17 – Setting a binding update in EB1

After doing this, the chat application was run again, a new session was initiated by EB1,

it was established and some messages were exchanged. This is shown in Figure 18.

/bin> livconfig -a 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE 39 30000

Entry added to the Binding Cache

/bin> livconfig -b

livconfig: Binding Cache:

HOME ADDRESS CARE-OF ADDRESS lt

2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39 2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 29994

Ubiquigeneous Networking

77 of 117

Figure 18 - Chat on EB1 with RO.

Every message from the CN to the MN was destined to address

2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 while every message from the MN to

the CN was sent using reverse tunneling through the HA. Table 3 shows the TCP

segments summary on eth1 of the Router, since a new session was initiated by EB1.

Frames {19, 20, 21} correspond to the 3-way handshake and {21} conveys the INVITE

message. It is possible to note the difference between Table 1 and Table 3 on the

destination address of packets directed to EB2.

N Time Source Destination Prot. Protocol Info

19 383.126189 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [SYN] Seq=12345678

Ack=0 Win=30000 Len=0

20 383.221545 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [SYN, ACK] Seq=12345678

Ack=12345679 Win=37800 Len=0

21 383.225012 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345679

Ack=12345679 Win=37800 Len=27

22 384.220113 2002:c3d4:6ffd:1101: 2002:c3d4:6ffd:1101: TCP 1514 > 49152 [ACK] Seq=12345679

/bin> chat uc1 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8

HOST: uClinux

IP: 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8

>>0:invite 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

>>

*** 1:ACCEPT RECEIVED FROM IP 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 NODE: ***

>>1:Hello

>>

*** 1:Hi, it's you again!***

>>yep, bye

*** PARSE ERROR: 109 ***

>>1:yep bye

>>0:finish 1

>>0:finish 0

>>

End

/bin> livconfig -b

livconfig: Binding Cache:

HOME ADDRESS CARE-OF ADDRESS lt

2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39 2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 29726

/bin>

Ubiquigeneous Networking

78 of 117

7232:4dff:fecb:be39 5258:1ff:fe9d:7eb8 Ack=12345706 Win=37800 Len=0

23 399.271254 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345679

Ack=12345706 Win=37800 Len=4

24 399.384050 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345706

Ack=12345683 Win=29996 Len=0

25 419.584996 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345706

Ack=12345683 Win=29996 Len=9

26 419.654114 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345683

Ack=12345715 Win=37791 Len=0

27 432.601719 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345683

Ack=12345715 Win=37791 Len=23

28 432.783956 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345715

Ack=12345706 Win=29996 Len=0

29 446.854926 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [ACK] Seq=12345715

Ack=12345706 Win=29996 Len=11

30 447.050742 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345706

Ack=12345726 Win=37789 Len=0

31 453.924838 2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

2002:c3d4:6ffd:2202:

7232:4dff:fecb:be39

TCP 49152 > 1514 [FIN, ACK] Seq=12345726

Ack=12345706 Win=29996 Len=0

32 454.050839 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [ACK] Seq=12345706

Ack=12345727 Win=37789 Len=0

33 454.821201 2002:c3d4:6ffd:1101:

7232:4dff:fecb:be39

2002:c3d4:6ffd:1101:

5258:1ff:fe9d:7eb8

TCP 1514 > 49152 [FIN, ACK] Seq=12345706

Ack=12345727 Win=37789 Len=0

Table 3 - Using RO. Frames on eth1 of the Router.

When Route Optimization was used, before sending any packet, EB1 looked into its

binding cache for an existing binding between the home address

2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39 and a care-of address. It found the

binding to the care-of address 2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 so the

destination address of the packet was set to the care-of address and a Routing Header

type 2 was added to convey the destination home address. Figure 19 shows the details

of frame {21}.

Ubiquigeneous Networking

79 of 117

Figure 19 - Frame 21. RO is used in messages sent by EB1.

Thus, the second test demonstrated that Route Optimization successfully works for

packets sent from a CN to a MN as long as the binding is previously set with the

livconfig application. Moreover, the fact of the mobile node’s being attached to foreign

network was transparent to the TCP layer and the chat application in both boards.

Frame 21 (137 bytes on wire, 137 bytes captured)
 Arrival Time: Apr 19, 2004 01:08:05.028553000
 Time delta from previous packet: 0.003467000 seconds
 Time relative to first packet: 383.225012000 seconds
 Frame Number: 21
 Packet Length: 137 bytes
 Capture Length: 137 bytes
Ethernet II, Src: 00:08:54:03:ff:f1, Dst: 70:32:4d:cb:be:39
 Destination: 70:32:4d:cb:be:39 (70:32:4d:cb:be:39)
 Source: 00:08:54:03:ff:f1 (Netronix_03:ff:f1)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 83
 Next header: IPv6 routing (0x2b)
 Hop limit: 254
 Source address: 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
 Destination address: 2002:c3d4:6ffd:2202:7232:4dff:fecb:be39
Routing Header, Type 2
 Next header: TCP (0x06)
 Length: 2 (24 bytes)
 Type: 2
 Segments left: 1
Transmission Control Protocol, Src Port: 49152 (49152), Dst Port: 1514 (1514), Seq:
12345679, Ack: 12345679, Len: 27
 Source port: 49152 (49152)
 Destination port: 1514 (1514)
 Sequence number: 12345679
 Next sequence number: 12345706
 Acknowledgement number: 12345679
 Header length: 32 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 37800
 Checksum: 0x2680 (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 1316, tsecr 1283
Data (27 bytes)

0000 00 00 00 1b 20 02 c3 d4 6f fd 11 01 52 58 01 ff o...RX..
0010 fe 9d 7e b8 75 43 6c 69 6e 75 78 ..~.uClinux

Ubiquigeneous Networking

80 of 117

14 An Application proprietary solution for mobility

14.1 What if

What would have happened if Mobile IPv6 had not been present in the MCF5272

processor? One alternative had been to implement mobility support over the Transport

Layer, as part of the application or as part of a Middleware Layer.

The functionalities explained below must be provided in order to apply this kind of

solution.

14.2 Location service, Identifier and Locator

Having understood that DNS, alone, does not provide a solution to mobility, it is

necessary to implement a location service that will provide a locator based on an

identifier.

Since the IP address will change depending on the attached network, it is not a possible

identifier. A sequence number, or a token, could be used to identify each device. It must

be assigned by some authority organization. An IP address will be used as Locator.

As location services, [1] proposes the following solutions:

1. Broadcasting and Multicasting.

2. Forwarding Pointers.

3. Home-Based Approaches.

4. Hierarchical Approaches.

Solution 1 is not scalable for Internet: a broadcast or multicast message must be spread

through the Internet if a device is being searched [1].

Solution 4 is more complicated than solutions 2 and 3.

Ubiquigeneous Networking

81 of 117

A Home Based approach implementation will be described further.

It is necessary to have a server to which every device will access when looking for other

device based on it identifier.

In the server side it is necessary to implement:

• A database with the assigned identifiers and state data, including the current

location.

• Listening to and managing new connections to the service: for a device indicating

that it is joining the service and it is available on a specific address.

• Listening to and managing search requests to return the corresponding address: for

a device searching another device owning the provided identifier.

On the device/client side it is necessary to implement:

• A connection service and interface to be called by the application as soon as it

pretends to be accessed.

• A search service to be invoked when a device pretends to communicate with another

device whose identifier is known.

• Assuming connection oriented communication is implemented it is necessary to

create the implementation of the main functionalities: connection identifier (like

sockets), connect, send, receive, close, listen, bind, accept.

• The new interface must be defined.

14.3 Mobility support

A solution must be implemented in both server and devices sides for mobility.

On the server side, the following functionalities must be implemented:

• Listening to and managing locator updates. If the server knows the current

Ubiquigeneous Networking

82 of 117

connections for every identifier it will send the updates to the corresponding devices;

otherwise, the corresponding devices will need to implement a method to detect the

other peer has moved.

On the device side, the following functionalities must be implemented:

• A way to detect that the device has moved to another network.

• Obtaining and update of the new address/locator, once movement has been

detected. The address update must be sent to the server and to the correspondent

nodes.

• Update of the peer address in the correspondent device. If a server update or a peer

update is not received, it is necessary to implement another way to detect the peer is

not reachable in the currently available address and to search the new address in the

server.

14.4 Disadvantages

The main disadvantages of a solution implemented as part of the application are:

• Extra effort to implement functionalities that are not part of the core application. It can

be seen that almost all Mobile IPv6 functionalities would have to be implemented as

part of the application.

• Lack of Portability: any already existing application must be ported to the new

interface.

• If a reliable connection like TCP is utilized, it will be necessary to close the old TCP

connection and to create a new TCP connection for every handover. This adds some

overhead.

• Not a standard solution. As Mobile IPv6 is.

If the solution were implemented in a Middleware layer, only the first point would be

overcome.

Ubiquigeneous Networking

83 of 117

15 Related Devices

15.1 A mobile chat device

The tested application along with MIPv6 implementation on a MCF5272 processor and

the addition of a small LCD screen, a small keyboard, or speech recognition software

and hardware, and wireless connectivity, bring up the possibility of creating a mobile

chat device that can roam over different networks with different link/physical layer

technologies and different carrier providers. This is a very simple service but other

services could be provided by such device: messaging, voice over IP, video and so on.

15.2 The Vocera Communications Badge

This is a device developed by Vocera Communications [22]. It provides instant two-way

communications in a campus environment using wireless LAN technology for mobile

workers.

This device combines the advantages of 802.11b wireless LAN technology, speech

recognition and VoIP to allow in-building mobile workers to instantly communicate with

one another while roaming and away from wired telephones and other hardwired

communications systems.

The system consists of Vocera Communications Server Software for a Windows 2000-

based server system and the Vocera Communications Badge. This badge is a small

wearable device that permits one user to communicate with another one, or to connect

to other phones through PBX integration. It is hands-free since voice commands can be

understood by the use of speech recognition.

It is mainly intended for mobile workers within a campus or a building environment, like

doctors or nurses in a hospital.

The size of this device is: 4.2” tall x 1.4” wide.

Ubiquigeneous Networking

84 of 117

Figure 20 - Vocera Communications Badge2

15.3 Advantages of using Mobile IPv6 in such device

By the use of MIPv6, a device like this could be used while a worker is moving from one

level 3 network to another. This situation could be common in a factory building where a

number of contiguous small range wireless LANs must be deployed because of the

interference caused by the factory equipment. Thus an initiated communication could be

maintained while the person moves from one network to other. Also it could be possible

to do vertical handover between different link technologies. All this would allow for less

code to be developed for handling mobility and would leverage mobility capabilities.

2
 The image was obtained from the Vocera web site [22]

Ubiquigeneous Networking

85 of 117

16 Future possible applications

16.1 Possibilities

As well as the applications already described, other applications can be created based

on the existence of Mobile IPv6.

16.2 Mobile MP3 player with home server

Some ColdFire processors have already been used to develop an MP3 player. The

implementation of Mobile IPv6 on ColdFire could lead to the implementation of a mobile

MP3 player, possibly running in the car. The MP3 player can download and play MP3

files from a server running at home. Instead of having all the files in a flash file system,

the mobile MP3 player could be connected to the server all the time, through different

technologies, like GPRS or 802.11 depending on the type of link available at any

moment.

16.3 Car Router

ColdFire is usually used for SOHO routers. So, it is possible to use it as a car mobile

router to bring Internet connectivity to a number of different devices inside the car. The

fact of having a MIPv6 stack in this router adds the possibility of vertical mobility

between different technologies like UMTS and 802.11, for example.

16.4 Anywhere Internet Device

There are places where cell phone services are not available, for example in

underground buildings, some manufacturing plants, elevators or special places where

some frequency bands are just banned. Sometimes, even though cell phones services

are available other type of access networks, like 802.11G, and the intranet, possibly

including a VPN, can provide the necessary communications service at a lower cost or

Ubiquigeneous Networking

86 of 117

taking the advantages of low-power consumption technology like Bluetooth. A two-way

radio system is an alternative that must be left behind if text messages, images, voice or

video are to be exchanged.

A person roaming in a factory between the offices, the campus and the production plant

with an Anywhere Internet Device can be always reachable as long as some type of

access network is provided and the device has the appropriate interface. The difference

with any other type of service and products is that the device is always connected

through different technologies of access networks. Thus the already existing

infrastructure can be used; thus, saving costs.

This device can be built with a ColdFire processor or other type of cheap processor

having uClinux, a Mobile IPv6 stack and the appropriate interfaces.

The device could run any type of application from messaging to video.

In order to provide this service the appropriate Mobile IPv6 routers must be deployed in

the places where connectivity is to be provided, if they are not already there. An X.500

directory service or a DNS could provide the mapping from human-friendly names or

some specific attributes to device home addresses.

A person having this device could move around in a factory while holding a data session

with its Anywhere Internet Device, an FTP download, for example. The person moves

from one office, where the device is connected through Bluetooth, Figure 21-A, to the

company’s campus, where the device makes a handover to a GPRS connection, Figure

21-B. When the person arrives to the manufacturing plant the device makes a handover

to an 802.11G connection, Figure 21-C. The data session is maintained during all the

handovers.

Ubiquigeneous Networking

87 of 117

Figure 21 - Different link technologies during the same session

Ubiquigeneous Networking

88 of 117

This device is similar to the Vocera Communications Badge described in 15.2 with the

advantages brought by MIPv6 and, as a consequence, with a different infrastructure.

The advantages are:

• There is no need of middleware, the Software Engineer will be focused on the

business case without worrying about reaching the aimed device, or group of

devices.

• In a near future we could obtain personal mobility with mobile IPv6. Reaching not a

specific device but a specific person in any mobile IPv6 device, including the one

described here, with little software development effort.

• Since mobility is implemented at network layer, no matter what the underlying

technology is.

• The advantages stated above allow the implementation of this service in different

buildings or campus, one far away from the other as long as they are connected.

• A device can be benefited with the advantages of low-power consumption brought by

Bluetooth.

• If there are different IP LANs a device will not be bothered by broadcasts on other

LANs.

• IPv6 brings the security provided by IPSec.

16.5 Easy Push To Talk

Push To Talk is an application first developed for IDEN technology but now used for all

cellular technologies. This is just a simple instance of the more general Anywhere

Internet Device described above. The fact of having Mobile IPv6 on a ColdFire

processor opens the possibility for having Push To Talk devices that can be located on

any type of access networks, like 802.11, Bluetooth, Infrared and even a wired network

like 802.3.

Ubiquigeneous Networking

89 of 117

17 Conclusions

The port of LIVSIX to ColdFire worked correctly regarding MIPv6, ICMPv6 with the

specific messages for MIPv6 and TCP for the messages used during the chat running

and mobility. One-way Route optimization was tested: the binding between home

address and the care-of address had to be manually set on the correspondent node;

when this was done, a packet destined to the home address at the application layer was

directly sent to the care-of address by the network layer and the routing header type 2

was added to the extension headers.

The type of handover tested here is called “horizontal handover”; further tests should be

done for wireless links, like Wi-Fi 802.11 and Bluetooth, and for vertical handovers by

changing the interface through which the board is connected.

The tests showed that an application programmed to communicate with IPv6 without any

consideration about mobility, can be run in a device over MIPv6 so that when the mobile

roams among different networks, this is transparent to TCP, or UDP, and the application.

Mobile devices are no longer limited to a specific access network. They can seamlessly

move from one provider network to another provider network as long as Mobile IPv6 is

supported. In the future, from a technical point of view, a user will be able to dynamically

change to the best, or cheapest, carrier provider without affecting a data - including

Voice over IP, video, etc. – communication.

A data communication session will no longer be limited to only one physical technology

as long as the device has the appropriate interfaces and service providers. A handover

between networks of different physical and data link layer technology is possible and this

is also transparent for Transport Layer protocols. Thus, a user coming home will be able

to change from a GPRS connection, through which he is maintaining a voice over IP

session and a file transfer session, for example, to a home Bluetooth connection to a

SOHO router connected to the Internet through a DSL connection, without affecting the

current sessions and, as a consequence, lowering the communications costs.

Ubiquigeneous Networking

90 of 117

From the paragraphs above it can be concluded that full device mobility can be

achieved. The final advantages will be noted in the communications costs and in the full

seamless mobility possibilities.

The transparency property was demonstrated during this work. Thus, distributed

applications programmed to run in small mobile devices have the mobility problem

already solved and this is a considerable save in software development costs according

to what has been seen in “An Application proprietary solution for mobility”.

Furthermore, transparency brings up portability for already implemented applications.

This means that no extra effort, nor costs, will be incurred to add mobility capabilities to

an already existent device in the market.

The conclusion is that, by the use of Mobile IPv6, development and maintenance

software costs, for mobile devices, will be lowered.

This work has been based on a ColdFire microprocessor with uClinux operating system

implementation. Different devices and applications, for which a ColdFire microprocessor

is used, have been described in “Processor platform”. The operating system uClinux is

currently used in many other microprocessors. Thus, LIVSIX could also be ported to

other different platforms and all the Mobile IPv6 advantages can be brought.

As well as the chat application developed for this test, many new distributed embedded

applications, to provide new mobile services, can be developed to run on small mobile

devices, the Vocera Communications Badge is just one example. Also, in “Future

possible applications”, some “ingenious” networking applications, that take advantage of

Mobile IPv6 characteristics to provide mobile and ubiquitous services, have been

described during this work. The applications will not be limited to cell phones or PDA

Internet navigation, e-mail or simple games. All the possible future mobile and ubiquitous

applications will open a wide market for new services and, looking at many

telecommunications companies, it can be seen that new markets are actually being

opened.

The fact of Mobile IPv6 being defined as an open standard by the IETF is no less

Ubiquigeneous Networking

91 of 117

important. Every provider developing MIPv6-capable devices will be sure that their

devices will correctly interwork with any different provider’s MIPv6 infrastructure devices.

This opens the way to competitiveness and price reduction.

Finally, implementations on cheap and small microprocessors such as the one

successfully realized during this work, the demonstrated capabilities brought by Mobile

IPv6 and the new possible applications based on this type of implementation, will lead to

the concept introduced at the beginning of this work: an almost unlimited number of

highly mobile devices with full connectivity, wherever the device moves to, and providing

many new kind of services. This is Ubiquigeneous Networking.

Ubiquigeneous Networking

92 of 117

18 Appendix A

18.1 Displays and Ethereal Output

In this appendix the display output of both boards and the Ethereal IPv6 frames

summaries are copied. Ethereal format files with all the frames (with or without IPv6

packets) are included in the companion CD.

18.2 EB1 Output

Motorola 5272 C3 boot

Uncompressing...done.
Linux version 2.4.21-uc0 (root@shire.middleearth) (gcc version 2.95.3
20010315 (release)(ColdFire patches - 20010318 from
http://fiddes.net/coldfire/)(-msep-data patches)) #112 Sun Apr 18
23:48:14 ART 2004
 uClinux/COLDFIRE(m5272)
COLDFIRE port done by Greg Ungerer, gerg@snapgear.com
Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne
On node 0 totalpages: 4096
zone(0): 0 pages.
zone(1): 4096 pages.
zone(2): 0 pages.
Kernel command line:
Calibrating delay loop... 43.62 BogoMIPS
Memory available: 14376k/16384k RAM, 0k/0k ROM (648k kernel code, 208k
data)
kmem_create: Forcing size word alignment - vm_area_struct
kmem_create: Forcing size word alignment - mm_struct
kmem_create: Forcing size word alignment - filp
Dentry cache hash table entries: 2048 (order: 2, 16384 bytes)
Inode cache hash table entries: 1024 (order: 1, 8192 bytes)
kmem_create: Forcing size word alignment - inode_cache
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
kmem_create: Forcing size word alignment - bdev_cache
kmem_create: Forcing size word alignment - cdev_cache
kmem_create: Forcing size word alignment - kiobuf
Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
Page-cache hash table entries: 4096 (order: 2, 16384 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
kmem_create: Forcing size word alignment - sock
Initializing RT netlink socket
Starting kswapd
kmem_create: Forcing size word alignment - file_lock_cache

Ubiquigeneous Networking

93 of 117

ColdFire internal UART serial driver version 1.00
ttyS0 at 0x10000100 (irq = 73) is a builtin ColdFire UART
ttyS1 at 0x10000140 (irq = 74) is a builtin ColdFire UART
kmem_create: Forcing size word alignment - blkdev_requests
fec.c: Probe number 0 with 0x0000
eth0: FEC ENET Version 0.2, 50:58:01:9d:7e:b8
fec: PHY @ 0x1, ID 0x0022561b -- AM79C874
SLIP: version 0.8.4-NET3.019-NEWTTY (dynamic channels, max=256).
CSLIP: code copyright 1989 Regents of the University of California.
Blkmem copyright 1998,1999 D. Jeff Dionne
Blkmem copyright 1998 Kenneth Albanowski
Blkmem 7 disk images:
0: F6290-1C628F [VIRTUAL F6290-1C628F] (RO)
1: FFE00000-FFE3FFFF [VIRTUAL FFE00000-FFE3FFFF] (RW)
2: FFE00000-FFE07FFF [VIRTUAL FFE00000-FFE07FFF] (RW)
3: FFE08000-FFE3FFFF [VIRTUAL FFE08000-FFE3FFFF] (RW)
4: FFE40000-FFFFFFFF [VIRTUAL FFE40000-FFFFFFFF] (RW)
5: FFF00000-FFFFFFFF [VIRTUAL FFF00000-FFFFFFFF] (RW)
6: FFE00000-FFFFFFFF [VIRTUAL FFE00000-FFFFFFFF] (RW)
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
PPP generic driver version 2.4.2
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
kmem_create: Forcing size word alignment - ip_dst_cache
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 1024 bind 1024)
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
VFS: Mounted root (romfs filesystem) readonly.
Freeing unused kernel memory: 24k freed (0xde000 - 0xe3000)
Shell invoked to run file: /etc/rc
Command: hostname uClinux
Command: /bin/expand /etc/ramfs.img /dev/ram0
Command: mount -t proc proc /proc
Command: mount -t ext2 /dev/ram0 /var
Command: mkdir /var/tmp
Command: mkdir /var/log
Command: mkdir /var/run
Command: mkdir /var/lock
Command: ifconfig lo 127.0.0.1
Command: cat /etc/motd
Welcome to
 ____ _ _
 / __| ||_|
 _ _| | | | _ ____ _ _ _ _
 | | | | | | || | _ \| | | |\ \/ /
 | |_| | |__| || | | | | |_| |/ \
 | _______|_||_|_| |_|____|_/_/
 | |
 |_|

For further information check:
http://www.uclinux.org/

Execution Finished, Exiting

Sash command shell (version 1.1.1)

Ubiquigeneous Networking

94 of 117

/> ifconfig 192.168.0.11_ __ __ __ __ __ __ __ __ __ __ __ _eth0
192.168.0.12_ _1
eth0: config: auto-negotiation on, 100FDX, 100HDX, 10FDX, 10HDX.
/> eth0: status: link up, 100MBit Full Duplex, auto-negotiation
complete.

/> insmod livsix.o
insmod: /lib/modules/2.4.21-uc0: No such file or directory
insmod: livsix.o: no module by that name found
pid 12: failed 256
/> cd bin
/bin> insmod livsix.o
Using livsix.o
LIVSIXv0.3 Loaded
/bin> setdefint eth0
Interface eth0 is the default
File /proc/sys/net/livsix/conf/eth0/defint
/bin> livconfig -s o ::/0 ::/0 0 0 0 0 0 1
/bin> livconfig -s i ::/0 ::/0 0 0 0 0 0 1
/bin> livconfig -h 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24
Setting Home Agent to 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24...
/bin> livconfig --ro enable
RO set
/bin> livconfig
eth0:
FE80::5258:1FF:FE9D:7EB8

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

/bin> livconfig
eth0:
2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8 ->(Home Address)
FE80::5258:1FF:FE9D:7EB8

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

/bin> chat uc1 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8
HOST: uClinux

Ubiquigeneous Networking

95 of 117

IP: 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8

>>0:invite 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
>>ERROR: nbuf_dequeue: nbuf queue list is null
ERROR: nbuf_dequeue: nbuf queue list is null
ERROR: nbuf_dequeue: nbuf queue list is null

*** 1:ACCEPT RECEIVED FROM IP 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
NODE: ***
>>1:He_ _ELLO!
>>
*** 1:HI I'm EB2***
>>Wh_ __ _1:Where are you_ __ __ __ __ __ __ __ __ __ __ __ __ __ __
_Where are you?

*** PARSE ERROR: 109 ***
>>1:Where are you?
>>
*** 1:I'm in network1***
>>
*** 1:I'll move to network2***
>>ERROR: nbuf_dequeue: nbuf queue list is null

*** 1:I've moved to network2. I'm in network2!!!***
>>1:Thats_ _'s great!
>>
*** 1:ok bye***
>>
*** 1:FINISH RECEIVED***
>>0:finish 0
>>
End
/bin> livconfig -a 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 30000
Entry added to the Binding Cache
/bin> livconfig -b
livconfig: Binding Cache:
HOME ADDRESS CARE-OF ADDRESS
lt
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 29994
/bin> chat _ __ __ __ __ _livconfig
eth0:
2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8 ->(Home Address)
FE80::5258:1FF:FE9D:7EB8

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Ubiquigeneous Networking

96 of 117

/bin> chat uc1 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8
HOST: uClinux
IP: 2002:C3D4:6FFD:1101:5258:1FF:FE9D:7EB8

>>0:invite 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
>>
*** 1:ACCEPT RECEIVED FROM IP 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
NODE: ***
>>1:Hello
>>
*** 1:Hi, it's you again!***
>>yep, bye

*** PARSE ERROR: 109 ***
>>1:yep bye
>>0:fui_ __ _inish 1
>>0:finish 0
>>
End
/bin> livconfig -b
livconfig: Binding Cache:
HOME ADDRESS CARE-OF ADDRESS
lt
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39 29726
/bin>

18.3 EB2 Output

Motorola 5272 C3 boot

Uncompressing...done.
Linux version 2.4.21-uc0 (root@shire.middleearth) (gcc version 2.95.3
20010315 (release)(ColdFire patches - 20010318 from
http://fiddes.net/coldfire/)(-msep-data patches)) #112 Sun Apr 18
23:48:14 ART 2004

uClinux/COLDFIRE(m5272)
COLDFIRE port done by Greg Ungerer, gerg@snapgear.com
Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne
On node 0 totalpages: 4096
zone(0): 0 pages.
zone(1): 4096 pages.
zone(2): 0 pages.
Kernel command line:
Calibrating delay loop... 43.62 BogoMIPS
Memory available: 14376k/16384k RAM, 0k/0k ROM (648k kernel code, 208k
data)
kmem_create: Forcing size word alignment - vm_area_struct
kmem_create: Forcing size word alignment - mm_struct
kmem_create: Forcing size word alignment - filp
Dentry cache hash table entries: 2048 (order: 2, 16384 bytes)

Ubiquigeneous Networking

97 of 117

Inode cache hash table entries: 1024 (order: 1, 8192 bytes)
kmem_create: Forcing size word alignment - inode_cache
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
kmem_create: Forcing size word alignment - bdev_cache
kmem_create: Forcing size word alignment - cdev_cache
kmem_create: Forcing size word alignment - kiobuf
Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
Page-cache hash table entries: 4096 (order: 2, 16384 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
kmem_create: Forcing size word alignment - sock
Initializing RT netlink socket
Starting kswapd
kmem_create: Forcing size word alignment - file_lock_cache
ColdFire internal UART serial driver version 1.00
ttyS0 at 0x10000100 (irq = 73) is a builtin ColdFire UART
ttyS1 at 0x10000140 (irq = 74) is a builtin ColdFire UART
kmem_create: Forcing size word alignment - blkdev_requests
fec.c: Probe number 0 with 0x0000
eth0: FEC ENET Version 0.2, 70:32:4d:cb:be:39
fec: PHY @ 0x1, ID 0x0022561b -- AM79C874
SLIP: version 0.8.4-NET3.019-NEWTTY (dynamic channels, max=256).
CSLIP: code copyright 1989 Regents of the University of California.
Blkmem copyright 1998,1999 D. Jeff Dionne
Blkmem copyright 1998 Kenneth Albanowski
Blkmem 7 disk images:
0: F6290-1C628F [VIRTUAL F6290-1C628F] (RO)
1: FFE00000-FFE3FFFF [VIRTUAL FFE00000-FFE3FFFF] (RW)
2: FFE00000-FFE07FFF [VIRTUAL FFE00000-FFE07FFF] (RW)
3: FFE08000-FFE3FFFF [VIRTUAL FFE08000-FFE3FFFF] (RW)
4: FFE40000-FFFFFFFF [VIRTUAL FFE40000-FFFFFFFF] (RW)
5: FFF00000-FFFFFFFF [VIRTUAL FFF00000-FFFFFFFF] (RW)
6: FFE00000-FFFFFFFF [VIRTUAL FFE00000-FFFFFFFF] (RW)
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
PPP generic driver version 2.4.2
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
kmem_create: Forcing size word alignment - ip_dst_cache
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 1024 bind 1024)
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
VFS: Mounted root (romfs filesystem) readonly.
Freeing unused kernel memory: 24k freed (0xde000 - 0xe3000)
Shell invoked to run file: /etc/rc
Command: hostname uClinux
Command: /bin/expand /etc/ramfs.img /dev/ram0
Command: mount -t proc proc /proc
Command: mount -t ext2 /dev/ram0 /var
Command: mkdir /var/tmp
Command: mkdir /var/log
Command: mkdir /var/run
Command: mkdir /var/lock
Command: ifconfig lo 127.0.0.1
Command: cat /etc/motd
Welcome to

Ubiquigeneous Networking

98 of 117

 ____ _ _
 / __| ||_|
 _ _| | | | _ ____ _ _ _ _
 | | | | | | || | _ \| | | |\ \/ /
 | |_| | |__| || | | | | |_| |/ \
 | _______|_||_|_| |_|____|_/_/
 | |
 |_|

For further information check:
http://www.uclinux.org/

Execution Finished, Exiting

Sash command shell (version 1.1.1)
/> ifconfig eth0 192.168.0.12
eth0: config: auto-negotiation on, 100FDX, 100HDX, 10FDX, 10HDX.
/> eth0: status: link up, 100MBit Full Duplex, auto-negotiation
complete.

/> cd bin
/bin> insmod livsix.o
Using livsix.o
LIVSIXv0.3 Loaded
/bin> setdefint eth0
Interface eth0 is the default
File /proc/sys/net/livsix/conf/eth0/defint
/bin> livconfig -s o ::/0 ::/0 0 0 0 0 0 1
/bin> livconfig -s i ::/0 ::/0 0 0 0 0 0 1
/bin> livconfig -h 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24
Setting Home Agent to 2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24...
/bin> livconfig --ro enable
RO set
/bin> livconfig
eth0:
FE80::7232:4DFF:FECB:BE39

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

/bin> livconfig
eth0:
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39 ->(Home Address)
FE80::7232:4DFF:FECB:BE39

lo:
::0.0.0.1

Ubiquigeneous Networking

99 of 117

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

/bin> chat uc2 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
HOST: uClinux
IP: 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

>>ERROR: nbuf_dequeue: nbuf queue list is null
ERROR: tcp_listen_sock_lookup: connection request
ERROR: nbuf_dequeue: nbuf queue list is null
ERROR: nbuf_dequeue: nbuf queue list is null
ERROR: nbuf_dequeue: nbuf queue list is null

*** 1:INVITE RECEIVED FROM IP 2002:c3d4:6ffd:1101:5258:01ff:fe9d:7eb8
NODE: uClinux***
>>0:acceptr_ _ 1
>>
*** 1:HELLO!***
>>1:HI I'm EB2
>>
*** 1:Where are you?***
>>1:Im_ _'m in networl_ _k1
>>1:I'll move to network2
>>1:I've moved to network2. I'm in network2!!!
>>
*** 1:That's great!***
>>ok by2_ _e_ __ __ __ __ __ _1:ok b_ __ __ __ __ __ _ok bye

*** PARSE ERROR: 109 ***
>>1:ok bye
>>0:finish 1
>>0:finish 0
>>
End
/bin> livconfig --bulist
livconfig: Binding Update List:
Hoa\Coa\HA\lifetime

2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24 4294967295
/bin> livconfig --bulist
livconfig: Binding Update List:
Hoa\Coa\HA\lifetime

2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39
2002:C3D4:6FFD:1101:2C0:26FF:FEB5:A24 4294967295
/bin> chat_ __ __ __ _livconfig
eth0:
2002:C3D4:6FFD:2202:7232:4DFF:FECB:BE39

Ubiquigeneous Networking

100 of 117

2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39 ->(Home Address)
FE80::7232:4DFF:FECB:BE39

lo:
::0.0.0.1

Inbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

Outbound Security Policy Database:
1. SRC: * DST: *
Policy: BYPASS

/bin> chat uc2 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
HOST: uClinux
IP: 2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39

>>ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported
ERROR: tcp_listen_sock_lookup: connection request
ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported

*** 1:INVITE RECEIVED FROM IP 2002:c3d4:6ffd:1101:5258:01ff:fe9d:7eb8
NODE: uClinux***
>>
>>1:acept _ __ __ __ __ __ __ __ _0:accept 1
>>ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported

>>ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported

*** 1:Hello***
>>1:Hi, it's you again!
>>ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported

>>ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported

*** 1:yep bye***
>>ERROR: ip6_rh_process: new dst =
2002:C3D4:6FFD:1101:7232:4DFF:FECB:BE39
ERROR: ip6_unpack: Routing Header type not supported

*** 1:FINISH RECEIVED***
>>0:finish 0
>>

Ubiquigeneous Networking

101 of 117

End
/bin>

18.4 Ethereal IPv6 packets summary: on HA’s eth0 before

handover

No. Time Source Destination Protocol Info
DestPort
 1 0.000000 fe80::7232:4dff:fecb:be39 ff02::2 ICMPv6 Router
solicitation
 2 14.020907 fe80::5258:1ff:fe9d:7eb8 ff02::2 ICMPv6 Router
solicitation
 3 126.668528 fe80::2c0:26ff:feb5:a24 ff02::2 ICMPv6 Router solicitation
 4 162.432315 fe80::2e0:7dff:fee1:fbc1 ff02::2 ICMPv6 Router
solicitation
 5 193.193778 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
 6 284.222978 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
 7 284.223252 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
 8 284.224157 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
 9 284.224425 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
10 284.224306 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
11 284.224713 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
12 284.225327 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
13 284.225557 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
14 284.225824 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
15 284.226078 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor advertisement
16 284.226606 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
17 284.226815 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
18 284.227094 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
19 284.227346 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor advertisement
20 284.227491 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
21 284.227734 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
22 284.227819 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
23 284.227983 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
24 284.228603 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
25 284.228816 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
26 284.229053 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
27 284.229243 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
28 284.228899 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation

Ubiquigeneous Networking

102 of 117

29 284.229479 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
30 284.229317 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
31 284.229729 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
32 284.230085 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
33 284.230197 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
34 284.230499 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
35 284.230705 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
36 284.230876 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
37 284.231399 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
38 284.231654 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
39 284.231745 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
40 284.232057 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
41 284.232463 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
42 284.232715 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
43 284.232857 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
44 284.233620 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
45 284.233741 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
46 284.235974 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
47 284.236194 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
48 284.236366 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
49 284.238243 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
50 284.242854 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
51 284.243130 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor advertisement
52 284.243393 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
53 284.243666 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor advertisement
54 284.270636 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
55 284.271503 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
56 284.296099 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
57 284.296906 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
58 284.297742 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement

Ubiquigeneous Networking

103 of 117

18.5 Ethereal IPv6 packets summary: on HA’s eth0 after

handover

No. Time Source Destination Protocol Info
DestPort
 1 0.000000 2002:c3d4:6ffd:2202:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 IPv6 cftp (0x3e)
 2 0.000301 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ff02::1 ICMPv6
Neighbor advertisement
 3 0.000506 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ff02::2 ICMPv6
Neighbor advertisement
 4 0.000796 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 IPv6 cftp (0x3e)
 5 23.449279 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345741
Ack=12345734 Win=37782 Len=46 49152
 6 23.449437 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345741
Ack=12345734 Win=37782 Len=46 49152
 7 23.585234 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345734
Ack=12345787 Win=29954 Len=0 1514
 8 23.585482 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345734
Ack=12345787 Win=29954 Len=0 1514
 9 33.107800 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345734
Ack=12345787 Win=29954 Len=17 1514
10 33.108067 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345734
Ack=12345787 Win=29954 Len=17 1514
11 33.169831 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345787
Ack=12345751 Win=37782 Len=0 49152
12 33.169968 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345787
Ack=12345751 Win=37782 Len=0 49152
13 68.906541 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345787
Ack=12345751 Win=37782 Len=10 49152
14 68.906701 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345787
Ack=12345751 Win=37782 Len=10 49152
15 68.992297 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345751
Ack=12345797 Win=29954 Len=0 1514
16 68.992546 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345751
Ack=12345797 Win=29954 Len=0 1514
17 81.028511 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [FIN, ACK] Seq=12345797
Ack=12345751 Win=37782 Len=0 49152
18 81.028667 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [FIN, ACK] Seq=12345797
Ack=12345751 Win=37782 Len=0 49152
19 81.194236 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345751
Ack=12345798 Win=29954 Len=0 1514
20 81.194485 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345751
Ack=12345798 Win=29954 Len=0 1514
21 81.594676 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [FIN, ACK] Seq=12345751
Ack=12345798 Win=29954 Len=0 1514
22 81.594928 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [FIN, ACK] Seq=12345751

Ubiquigeneous Networking

104 of 117

Ack=12345798 Win=29954 Len=0 1514
23 160.396859 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
24 176.629426 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
25 191.301747 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
26 206.144085 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
27 218.045975 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
28 226.197265 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
29 235.078666 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
30 245.120256 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
31 256.812108 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
32 269.174059 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
33 277.765421 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
34 287.716994 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
35 296.148331 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
36 305.879868 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
37 314.751275 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
38 329.523619 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
39 340.935420 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
40 356.607896 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
41 372.510412 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
42 383.280153 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [SYN, ACK] Seq=12345678
Ack=12345679 Win=37800 Len=0 49152
43 383.280310 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [SYN, ACK] Seq=12345678
Ack=12345679 Win=37800 Len=0 49152
44 384.278859 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345679
Ack=12345706 Win=37800 Len=0 49152
45 384.279011 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345679
Ack=12345706 Win=37800 Len=0 49152
46 384.892368 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
47 393.723770 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
48 399.332394 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345679
Ack=12345706 Win=37800 Len=4 49152
49 399.332550 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345679
Ack=12345706 Win=37800 Len=4 49152
50 404.505477 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
51 415.927285 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
52 419.718482 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345683
Ack=12345715 Win=37791 Len=0 49152
53 419.718639 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345683
Ack=12345715 Win=37791 Len=0 49152

Ubiquigeneous Networking

105 of 117

54 425.368779 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
55 432.668156 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345683
Ack=12345715 Win=37791 Len=23 49152
56 432.668311 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345683
Ack=12345715 Win=37791 Len=23 49152
57 440.631193 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
58 447.119454 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345706
Ack=12345726 Win=37789 Len=0 49152
59 447.119610 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345706
Ack=12345726 Win=37789 Len=0 49152
60 450.772802 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
61 454.120952 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345706
Ack=12345727 Win=37789 Len=0 49152
62 454.121108 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345706
Ack=12345727 Win=37789 Len=0 49152
63 454.891117 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [FIN, ACK] Seq=12345706
Ack=12345727 Win=37789 Len=0 49152
64 454.891263 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [FIN, ACK] Seq=12345706
Ack=12345727 Win=37789 Len=0 49152
65 459.374155 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
66 473.466389 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
67 488.428766 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
68 500.990769 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
69 518.983587 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
70 535.256163 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
71 551.268693 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement

18.6 Ethereal IPv6 packets summary: on Router’s eth0 before

handover

No. Time Source Destination Protocol Info
173 43.639309 fe80::7232:4dff:fecb:be39 ff02::2 ICMPv6 Router
solicitation
202 57.657999 fe80::5258:1ff:fe9d:7eb8 ff02::2 ICMPv6 Router
solicitation
439 170.288045 fe80::2c0:26ff:feb5:a24 ff02::2 ICMPv6 Router
solicitation
552 206.045841 fe80::2e0:7dff:fee1:fbc1 ff02::2 ICMPv6 Router
solicitation
775 236.802396 fe80::2e0:7dff:fee1:fbc1 ff02::1 ICMPv6 Router
advertisement
964 327.817308 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
965 327.818378 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1

Ubiquigeneous Networking

106 of 117

2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
966 327.817850 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
967 327.819546 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
968 327.818634 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
969 327.820825 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
970 327.819013 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
971 327.822040 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
972 327.819306 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
973 327.823102 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
974 327.820142 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
975 327.824261 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
976 327.820156 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
977 327.825618 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
978 327.821422 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
979 327.826683 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
980 327.821438 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
981 327.827836 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
982 327.821833 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
983 327.829129 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor advertisement
984 327.822328 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
985 327.830217 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
986 327.823615 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
987 327.831441 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor advertisement
988 327.824320 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
989 327.832479 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor advertisement
990 327.824573 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
991 327.833648 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
992 327.834406 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
993 327.835232 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
994 327.835948 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
995 327.826260 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
996 327.837087 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
997 327.837617 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 ICMPv6 Neighbor solicitation
998 327.827347 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
999 327.827379 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1000 327.838983 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation

Ubiquigeneous Networking

107 of 117

1001 327.839579 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
1002 327.840174 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor solicitation
1003 327.828348 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1004 327.828650 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1005 327.829862 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1006 327.830776 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
1007 327.842238 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 ICMPv6 Neighbor advertisement
1008 327.830942 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor solicitation
1009 327.843315 2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 ICMPv6 Neighbor advertisement
1010 327.831310 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1011 327.832015 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1012 327.832587 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1013 327.832878 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1014 327.833450 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1015 327.834075 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1016 327.834540 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1017 327.835027 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement
1018 327.836427 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2e0:7dff:fee1:fbc1 ICMPv6 Neighbor advertisement

18.7 Ethereal IPv6 packets summary: on Router’s eth1 after

handover

No. Time Source Destination Protocol Info
 1 0.000000 fe80::208:54ff:fe03:fff1 ff02::2 ICMPv6 Router
solicitation
 2 0.000098 fe80::208:54ff:fe03:fff1 ff02::1 ICMPv6 Router
advertisement
 3 0.001911 2002:c3d4:6ffd:2202:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24 IPv6 Unknown (0x3e)
 4 0.005327 2002:c3d4:6ffd:2202:208:54ff:fe03:fff1
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 ICMPv6 Neighbor solicitation
 5 0.006563 2002:c3d4:6ffd:2202:7232:4dff:fecb:be39
2002:c3d4:6ffd:2202:208:54ff:fe03:fff1 ICMPv6 Neighbor solicitation
 6 0.007477 2002:c3d4:6ffd:2202:208:54ff:fe03:fff1
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 ICMPv6 Neighbor advertisement
 7 0.008312 2002:c3d4:6ffd:2202:7232:4dff:fecb:be39
2002:c3d4:6ffd:2202:208:54ff:fe03:fff1 ICMPv6 Neighbor advertisement
 8 0.009096 2002:c3d4:6ffd:1101:2c0:26ff:feb5:a24
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 IPv6 Unknown (0x3e)
 9 23.447565 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345741
Ack=12345734 Win=37782 Len=46
 10 23.585459 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345734

Ubiquigeneous Networking

108 of 117

Ack=12345787 Win=29954 Len=0
 11 33.106548 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345734
Ack=12345787 Win=29954 Len=17
 12 33.166377 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345787
Ack=12345751 Win=37782 Len=0
 13 68.897671 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345787
Ack=12345751 Win=37782 Len=10
 14 68.985326 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345751
Ack=12345797 Win=29954 Len=0
 15 81.017736 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [FIN, ACK] Seq=12345797
Ack=12345751 Win=37782 Len=0
 16 81.185318 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345751
Ack=12345798 Win=29954 Len=0
 17 81.585708 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:1101:7232:4dff:fecb:be39 TCP 49152 > 1514 [FIN, ACK] Seq=12345751
Ack=12345798 Win=29954 Len=0
 18 137.834238 fe80::208:54ff:fe03:fff1 ff02::1 ICMPv6 Router
advertisement
 19 383.126189 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [SYN] Seq=12345678 Ack=0
Win=30000 Len=0
 20 383.221545 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [SYN, ACK] Seq=12345678
Ack=12345679 Win=37800 Len=0
 21 383.225012 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345679
Ack=12345679 Win=37800 Len=27
 22 384.220113 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345679
Ack=12345706 Win=37800 Len=0
 23 399.271254 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345679
Ack=12345706 Win=37800 Len=4
 24 399.384050 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345706
Ack=12345683 Win=29996 Len=0
 25 419.584996 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345706
Ack=12345683 Win=29996 Len=9
 26 419.654114 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345683
Ack=12345715 Win=37791 Len=0
 27 432.601719 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345683
Ack=12345715 Win=37791 Len=23
 28 432.783956 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345715
Ack=12345706 Win=29996 Len=0
 29 446.854926 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [ACK] Seq=12345715
Ack=12345706 Win=29996 Len=11
 30 447.050742 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345706
Ack=12345726 Win=37789 Len=0
 31 453.924838 2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8
2002:c3d4:6ffd:2202:7232:4dff:fecb:be39 TCP 49152 > 1514 [FIN, ACK] Seq=12345726
Ack=12345706 Win=29996 Len=0
 32 454.050839 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [ACK] Seq=12345706
Ack=12345727 Win=37789 Len=0
 33 454.821201 2002:c3d4:6ffd:1101:7232:4dff:fecb:be39
2002:c3d4:6ffd:1101:5258:1ff:fe9d:7eb8 TCP 1514 > 49152 [FIN, ACK] Seq=12345706
Ack=12345727 Win=37789 Len=0

Ubiquigeneous Networking

109 of 117

19 Appendix B

19.1 Utility files

Some files were created in order to set the configuration of the mobile boards and the

Router PC.

19.2 File addroutes

This is a shell script file to set the routes in kernel IPv6 routing table, in the Router.

#/bin/sh
route -A inet6 add 2002:C3D4:6FFD:1101::/64 eth0
route -A inet6 add 2002:C3D4:6FFD:2202::/64 eth1

19.3 File setrouter.c

This file is compiled and executed in the Router to configure it according to [14].

#include <stdio.h>

#define SYSCTL_SPD "/proc/sys/net/livsix/spd"
#define SYSCTL_SAD "/proc/sys/net/livsix/sad"
#define SYSCTL_PREFIX_0
"/proc/sys/net/livsix/conf/eth0/ra_prefix_00/ra_pfl_prefix"
#define SYSCTL_PREFIX_1
"/proc/sys/net/livsix/conf/eth1/ra_prefix_00/ra_pfl_prefix"
#define SYSCTL_PREFIX_0_LEN
"/proc/sys/net/livsix/conf/eth0/ra_prefix_00/ra_pfl_prefixlen"
#define SYSCTL_PREFIX_1_LEN
"/proc/sys/net/livsix/conf/eth1/ra_prefix_00/ra_pfl_prefixlen"
#define SYSCTL_RAS_SEND0
"/proc/sys/net/livsix/conf/eth0/ra_send_ras"
#define SYSCTL_RAS_SEND1
"/proc/sys/net/livsix/conf/eth1/ra_send_ras"
#define SYSCTL_ISRO "/proc/sys/net/livsix/isrouter"
#define SYSCTL_MAX_RA0
"/proc/sys/net/livsix/conf/eth0/ra_maxra_interval"
#define SYSCTL_MAX_RA1
"/proc/sys/net/livsix/conf/eth1/ra_maxra_interval"
#define SYSCTL_MIN_RA0

Ubiquigeneous Networking

110 of 117

"/proc/sys/net/livsix/conf/eth0/ra_minra_interval"
#define SYSCTL_MIN_RA1
"/proc/sys/net/livsix/conf/eth1/ra_minra_interval"
#define LEN_TEXT 255

int main()
{
 FILE *sysctl_entry;
 char text[LEN_TEXT + 1];

/*eth0*/
 if ((sysctl_entry = fopen(SYSCTL_PREFIX_0, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_PREFIX_0);
 perror (text);
 return -1;
 }

 fputs ("2002:c3d4:6ffd:1101::", sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_PREFIX_0_LEN, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_PREFIX_0_LEN);
 perror (text);
 return -1;
 }

 fputs ("64", sysctl_entry);
 fclose (sysctl_entry);

/*eth1*/

 if ((sysctl_entry = fopen(SYSCTL_PREFIX_1, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_PREFIX_1);
 perror (text);
 return -1;
 }

 fputs ("2002:c3d4:6ffd:2202::", sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_PREFIX_1_LEN, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_PREFIX_1_LEN);
 perror (text);
 return -1;
 }

 fputs ("64", sysctl_entry);
 fclose (sysctl_entry);

Ubiquigeneous Networking

111 of 117

/*eth0*/

 if ((sysctl_entry = fopen (SYSCTL_MAX_RA0, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_MAX_RA0);
 perror (text);
 return -1;
 }

 fputs("1800", sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_MIN_RA0, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_MIN_RA0);
 perror (text);
 return -1;
 }

 fputs("800", sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_RAS_SEND0, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_RAS_SEND0);
 perror (text);
 return -1;
 }

 fputc('1', sysctl_entry);
 fclose (sysctl_entry);

/*eth1*/

 if ((sysctl_entry = fopen (SYSCTL_MAX_RA1, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_MAX_RA1);
 perror (text);
 return -1;
 }

 fputs("1800", sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_MIN_RA1, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_MIN_RA1);
 perror (text);
 return -1;
 }

 fputs("800", sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_RAS_SEND1, "r+")) == NULL)

Ubiquigeneous Networking

112 of 117

 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_RAS_SEND1);
 perror (text);
 return -1;
 }

 fputc('1', sysctl_entry);
 fclose (sysctl_entry);

 if ((sysctl_entry = fopen (SYSCTL_ISRO, "r+")) == NULL)
 {
 sprintf(text, "Failed to open file %s\n", SYSCTL_ISRO);
 perror (text);
 return -1;
 }

 fputc ('1', sysctl_entry);
 fclose (sysctl_entry);

 return 0;
}

19.4 File setval.c

This file is compiled and then executed in the shell to insert any value in a “/proc” file.

#include <stdio.h>

#define LEN_FILENAME 255

#define LEN_VALUE 150

int main(int argc, char **argv)

{

 FILE *sysctl_entry;

 char value[LEN_VALUE + 1];

 char filename[LEN_FILENAME + 1];

 if (argc == 3)

 {

 sprintf(filename, "%s", argv[2]);

Ubiquigeneous Networking

113 of 117

 printf("File %s\n", filename);

 sprintf(value, "%s", argv[1]);

 printf("Value %s\n", value);

 }

 else

 {

 perror("Two arguments must be entered: value file\n");

 exit(1);

 }

 if ((sysctl_entry = fopen(filename, "r+")) == NULL)

 {

 perror ("Cannot open file\n");

 exit(1);

 }

 fputs(value, sysctl_entry);

 fclose (sysctl_entry);

 return 0;

}

19.5 File setdefint.c

This file is compiled and then executed in the shell to set the default interface.

#include <stdio.h>

#define SYSCTL_INTERFACE_CONF "/proc/sys/net/livsix/conf"

#define LEN_FILENAME 255

Ubiquigeneous Networking

114 of 117

int main(int argc, char **argv)

{

 FILE *sysctl_entry;

 char interface[LEN_FILENAME + 1];

 if (argc == 2)

 {

 sprintf(interface, "%s/%s/defint", SYSCTL_INTERFACE_CONF,

argv[1]);

 printf("Interface %s is the default\n", argv[1]);

 printf("File %s\n", interface);

 }

 else

 {

 perror("One argument must be entered: interface\n");

 exit(1);

 }

 if ((sysctl_entry = fopen(interface, "r+")) == NULL)

 {

 perror ("Cannot open file\n");

 exit(1);

 }

 fputc ('1', sysctl_entry);

 fclose (sysctl_entry);

 return 0;

}

Ubiquigeneous Networking

115 of 117

20 Bibliography

[1] Andrew S. Tanenbaum, Maarten van Steen. “Distributed Systems, Principles and

Paradigms”. Prentice Hall. 2002.

[2] William Stallings. “Network Security Essentials, Applications and Standards”. Prentice

Hall. 2000.

[3] Douglas E. Comer. “Internetworking with TCP/IP, Principles, Protocols and

Architectures. Volume 1”. Prentice Hall. Fourth Edition. 2000.

[4] Dave Wisely, Philip Eardley, Louise Burness. “IP for 3G, Networking Technologies

For Mobile Communications”. WILEY. 2002.

[5] Alessandro Rubini, Jonathan Corbet. “LINUX DEVICE DRIVERS”. O’Reilly. Second

Edition. 2001.

[6] W. Richard Stevens. “UNIX NETWORKING PROGRAMMING, Networking APIs:

Sockets and XTI. Volume 1”. Prentice Hall. Second Edition. 1998.

[7] C. Perkins. Network Working Group. “IP Mobility Support for IPv4”. RFC 3344.

August 2002.

[8] D. Johnson, C. Perkins, J. Arkko. IETF Mobile IP Working Group. “Mobility Support in

IPv6”. Draft-ietf-mobileip-ipv6-24.txt . Internet-Draft. June 2003.

[9] S. Deering, R. Hinden. Network Working Group. “Internet Protocol, Version 6 (IPv6),

Specification”. RFC 2460. December 1998.

[10] T. Narten, E. Nordmark, W. Simpson. Network Working Group. “Neighbor Discovery

for IP Version 6 (IPv6)”. RFC 2461. December 1998.

[11] S. Thomson, T. Narten. Network Working Group. “IPv6 Stateless Address

Ubiquigeneous Networking

116 of 117

Autoconfiguration”. RFC 2462. December 1998.

[12] M. Crawford. Network Working Group. “Transmission of IPv6 Packets over Ethernet

Networks”. RFC 2464. December 1998.

[13] R. Hinden, S. Deering. Network Working Group. “IP Version 6 Addressing

Architecture”. RFC 2373. July 1998.

[14] Alexandru Petrescu, Emmanuel Riou. “HOWTO use a LIVSIX box as a router. A

guide to LIVSIX routing configuration”. http://www.enrl.motlabs.com/livsix . May 2003.

[15] Alexandru Petrescu, Emmanuel Riou. “IPv6 Applications over LIVSIX. A guide to the

IPv6 applications which are running over LIVSIX”. http://www.enrl.motlabs.com/livsix .

February 2003.

[16] Alexandru Petrescu, Emmanuel Riou. “The LIVSIX mobility HOWTO. A detailed

guide to LIVSIX mobility configuration and use”. http://www.enrl.motlabs.com/livsix.

January 2003.

Ubiquigeneous Networking

117 of 117

21 Web Sites

[17] LIVSIX web site. http://www.enrl.motlabs.com/livsix - main contact for the author:

Alexandru Petrescu – Authors can be found at:

http://www.enrl.motlabs.com/livsix/livsix/AUTHORS

[18] 68K/ColdFire web site:

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=018rH3YTLC

[19] uClinux web site: www.uclinux.org

[20] BusyBox web site: www.busybox.net

[21] microcom development page in sourceforge.net:

http://sourceforge.net/projects/microcomste

[22] Vocera Communications web site: www.vocera.com . All the information regarding

the device, as well as the picture, was obtained from this site documentation.

